Detailseite
Projekt Druckansicht

Algebraic Structures on Symplectic Homology and Their Applications

Fachliche Zuordnung Mathematik
Förderung Förderung von 2013 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 227710160
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

The goal of this project was to introduce new algebraic structures on the symplectic homology of Liouville domains and apply these structures to problems in symplectic topology. After a broadening of the scope of algebraic structures to be considered, the following results were obtained: A general setup for obtaining operadic structures on Floer theories from moduli spaces of holomorphic maps (in progress); • a new approach to transversality of holomorphic curves based on scaled Fréchet spaces; • new algebraic structures such as Tate versions of equivariant symplectic homology and a secondary product on positive symplectic cohomology; • Viterbo transfer maps for exact symplectic embeddings of Liouville cobordisms and applications, such as obstructions to the existence of Liouville cobordisms between given contact manifolds; • computations of symplectic homology of Brieskorn manifolds and constructions of new infinite families of exotic contact structures; • proof that symplectic homology is finitely generated as an algebra for a large class of Liouville domains with periodic Reeb flow on the boundary.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung