SFB 813: Chemistry at Spin Centres - Concepts, Mechanisms, Functions
Biology
Final Report Abstract
The Collaborative Research Center 813 (CRC 813) was devoted to the Chemistry at Spin Centers. Spin centers were understood as molecules, ions, (bio)polymers and aggregates thereof, all of which featuring a finite number of unpaired electrons. The spin centers that were studied included Systems with Unpaired Electrons in their electronic ground state and also those, which can be prepared in one of their electronically excited states such as through resonant optical excitation. In comparison to the ubiquitous systems exhibiting exclusively paired electrons, the chemical reactivity, the physico-chemical properties, and the spectroscopy of spin centers is of substantially higher complexity. The goal of the CRC was to prepare such spin centers in the laboratory, to control their rapid, often unselective chemical reaction patterns, to elucidate their molecular and electronic structures by means of state-of-the-art spectroscopy combined with quantum-chemical calculations, and – if possible – to exploit the attained knowledge in developing novel materials with fascinating electrical and/or magnetic properties. In the area of Organometallic Chemistry and Catalysis, the CRC 813 was able to develop new concepts for atom-economical and hence, sustainable catalytic transformations based on oxidative additions and reductive eliminations in single-electron transfer steps with spin density translocations between transition metal centers and main group elements. In this spirit, a bifunctional titanocene(III) catalysts was designed that facilitates an elegant epoxide ring opening while at the same time serving as an hydrogen-atom transfer reagent. This unique dual functionality presents also an important step forward in controlling catalyst enantioselectivity in the context of radical chemistry. A spectacular new entry into the rich Chemistry of Silicon was discovered through the CRC by the successful synthesis of a low-valent disilicon species that was stabilized by N-heterocyclic carbenes. This species allowed for the isolation of a transition metal complex featuring a metal-silicon triple bond as well as for the preparation of a stable silanone exhibiting a silicon-oxygen double bond. These important discoveries are of tremendous relevance for the chemical industry, e.g. for the advancement of catalysts or the development of new silicon-based polymers with unique property combinations. A true breakthrough has been achieved in the field of Radiation Chemistry through the CRC’s research activities devoted to understanding the optical spectroscopy and the chemical reactivity of the “Mother of all Spin Centers”, the Solvated Electron. Specifically, by implementing tunable-multiphoton-ionization-probe spectroscopy the CRC was able to monitor the fate of the negative charge carriers following their initial optical preparation in Sir Humphry Davy’s discovery system, the solvated electron in liquid ammonia. In general, such experiments provide important benchmarks for electronic structure theory of condensed matter systems with strong dynamical disorder. Transient, highly reactive transition metal spin centers were also generated by photochemical means. In particular, azidoiron(III) precursors were used to prepare through an ultrafast homolytic N-N bond cleavage and dinitrogen elimination very fascinating nitridoiron(V) species. Importantly, these High-Valent Iron complexes feature a four-fold symmetrical coordination sphere, which makes them inherently unstable and non-isolable. Nonetheless, by exploiting the power of ultrafast time-resolved vibrational spectroscopy, the CRC was able to explore in detail the molecular and electronic structure of such species and it succeeded in disclosing, for the first time and in situ, the chemical reactivity of “superoxidized” iron directly in liquid solution. This research has tremendous impact for an understanding of the role of high-valent iron in nature where it contributes to enzymatic oxidation processes. Finally, in the area of Materials Sciences the CRC 813 designed novel solid state systems that are based on purely inorganic π-systems, which in turn are built from tellurium and bismuth-containing main-group salts. These compounds show electrical conductivity characteristics of either a semiconductor, or a one-dimensional metallic conductor, or even a superconductor depending upon the composition and the temperature.
Publications
- Catalysis via homolytic substitutions with C-O and Ti-O bonds: oxidative additions and reductive eliminations in single electron steps. J. Am. Chem. Soc. 2009, 131, 16989–16999
A. Gansäuer, A. Fleckhaus, M. Alejandre Lafont, A. Okkel, K. Kotsis, A. Anoop, and F. Neese
(See online at https://doi.org/10.1021/ja907817y) - Anodic phenol arene cross-coupling reaction on boron-doped diamond electrodes. Angew. Chem. Int. Ed. 2010, 49, 971–975; Angew. Chem. 2010, 122, 9838-987
A. Kirste, G. Schnakenburg, F. Stecker, A. Fischer, and S. R. Waldvogel
(See online at https://doi.org/10.1002/anie.200904763 https://doi.org/10.1002/ange.200904763) - Catalytic enantioselective radical cyclizations via regiodivergent epoxide opening J. Am. Chem. Soc. 2010, 132, 11858–11859
A. Gansäuer, L. Shi, and M. Otte
(See online at https://doi.org/10.1021/ja105023y) - First insights into the chemistry of P-functional phosphanyl complexes Angew. Chem. Int. Ed. 2010, 49, 6894–6898; Angew. Chem. 2010, 122, 7047–7051
A. Özbolat-Schön, M. Bode, G. Schnakenburg, M. van Gastel, A. Anoop, F. Neese, and R. Streubel
(See online at https://doi.org/10.1002/anie.201002885 https://doi.org/10.1002/ange.201002885) - Metal-silicon triple bonds: The molybdenum silylidyne complex [Cp(CO)2MoSi-R]. Angew. Chem. Int. Ed. 2010, 49, 3296–3300; Angew. Chem. 2010, 122, 3368–3372
A. C. Filippou, O. Chernov, K. W. Stumpf, and G. Schnakenburg
(See online at https://doi.org/10.1002/anie.201000837 https://doi.org/10.1002/ange.201000837) - Diversity-oriented synthesis of polycyclic scaffolds by post-modification of an anodic product derived from 2,4-dimethylphenol. (selected for front cover artwork) Angew. Chem. Int. Ed. 2011, 50, 1415–1419; Angew. Chem. 2011, 123, 1451–1455
J. Barjau, G. Schnakenburg, and S. R. Waldvogel
(See online at https://doi.org/10.1002/anie.201006637 https://doi.org/10.1002/ange.201006637) - A semiconductor or a one-dimensional metal and superconductor through tellurium πstacking Angew. Chem. Int. Ed. 2012, 51, 8106–8109; Angew. Chem. 2012, 124, 82309–8233
E. Ahmed, J. Beck, J. Daniels, T. Doert, S. J. Eck, A. Heerwig, A. Isaeva, S. Lidin, M. Ruck, W. Schnelle, and A. Stankowski
(See online at https://doi.org/10.1002/anie.201200895 https://doi.org/10.1002/ange.201200895) - Catalytic hydrogen atom transfer (HAT) for sustainable and diastereoselective radical reduction. Angew. Chem. Int. Ed. 2012, 51, 8891–8894; Angew. Chem. 2012, 124, 9021–9024
A. Gansäuer, M. Klatte, G. M. Brändle, and J. Friedrich
(See online at https://doi.org/10.1002/anie.201202818 https://doi.org/10.1002/ange.201202818) - Catalytic, atom-economical radical arylation of epoxides Angew. Chem. Int. Ed. 2012, 51, 4739–4742; Angew. Chem. 2012, 124, 4819–4823
A. Gansäuer, M. Behlendorf, D. von Laufenberg, A. Fleckhaus, C. Kube, D. V. Sadasivam, and R. A. Flowers II
(See online at https://doi.org/10.1002/anie.201200431 https://doi.org/10.1002/ange.201200431) - H2O activation for hydrogen-atom transfer: Correct structures and revised mechanisms. Angew. Chem. Int. Ed. 2012, 51, 3266–3270; Angew. Chem. 2012, 124, 3320–3324
A. Gansäuer, M. Behlendorf, A. Cangönül, C. Kube, J.M. Cuerva, J. Friedrich, and M. van Gastel
(See online at https://doi.org/10.1002/anie.201107556 https://doi.org/10.1002/ange.201107556) - Open shell complexes containing metal-germanium triple bonds. Angew. Chem. Int. Ed. 2012, 51, 789–793; Angew. Chem. 2012, 124, 813–817
A. C. Filippou, A. Barandov, G. Schnakenburg, B. Lewall, M. van Gastel, and A. Marchanka
(See online at https://doi.org/10.1002/anie.201107120 https://doi.org/10.1002/ange.201107120) - Manganese-tin triple bonds: A new synthetic route to the manganese stannylidyne complex cation trans-[H(dmpe)2Mn≡Sn(C6H3‑2,6-Mes2)]+ (dmpe = Me2PCH2CH2PMe2, Mes = 2,4,6- trimethylphenyl). J. Am. Chem. Soc. 2013, 135, 11525–11528
A. C. Filippou, P. Ghana, U. Chakraborty, and G. Schnakenburg
(See online at https://doi.org/10.1021/ja406290t) - Observing the formation and the reactivity of an octahedral iron(V) nitrido complex in real time. Angew. Chem. Int. Ed. 2013, 52, 12833–12837; Angew. Chem. 2013, 125, 13067–13071
J. Torres-Alacan, U. Das, A.C. Filippou, and P. Vöhringer
(See online at https://doi.org/10.1002/anie.201306621 https://doi.org/10.1002/ange.201306621) - Silicon(II) coordination chemistry: N-heterocyclic carbene complexes of Si2+ and SiI+. Angew. Chem. Int. Ed. 2013, 52, 6974–6978; Angew. Chem. 2013, 125, 7112–7116
A. C. Filippou, Y. N. Lebedev, O. Chernov, M. Straßmann, and G. Schnakenburg
(See online at https://doi.org/10.1002/anie.201301363 https://doi.org/10.1002/ange.201301363) - Towards First Principles Calculation of Electron Impact Mass Spectra of Molecules. Angew. Chem. Int. Ed. 2013, 52, 6306–6312; Angew. Chem. 2013, 125, 6426–6433
S. Grimme
(See online at https://doi.org/10.1002/anie.201300158 https://doi.org/10.1002/ange.201300158) - Enantiomerically pure M6L12 or M12L24-polyhedra from flexible chiral bis(pyridine) ligands. Angew. Chem. Int. Ed. 2014, 53, 1693–1698; Angew. Chem. 2014, 126, 1719–17248
C. Gütz, R. Hovorka, C. Klein, Q.-Q. Jiang, C. Bannwarth, M. Engeser, C. Schmuck, W. Assenmacher, W. Mader, F. Topic, K. Rissanen, S. Grimme, and A. Lützen
(See online at https://doi.org/10.1002/anie.201308651 https://doi.org/10.1002/ange.201308651) - Enantiomerically pure trinuclear helicates via diastereoselective self-assembly and characterization of their redox chemistry. J. Am. Chem. Soc. 2014, 136, 11830–1838
C. Gütz, R. Hovorka, N. Struch, J. Bunzen, G. Meyer-Eppler, Z.-W. Qu, S. Grimme, F. Topic, K. Rissanen, M. Cetina, M. Engeser, and A. Lützen
(See online at https://doi.org/10.1021/ja506327c) - Reaction of bridged frustrated Lewis pairs with nitric oxide: A kinetics study J. Am. Chem. Soc. 2014, 136, 513–519
J. C. M. Pereira, M. Sajid, G. Kehr, A. M. Wright, B. Schirmer, Z.-W. Qu, S. Grimme, G. Erker, and P. C. Ford
(See online at https://doi.org/10.1021/ja4118335) - Silicon-oxygen double bonds: A stable silanone with a trigonal-planar coordinated silicon center. Angew. Chem. Int. Ed. 2014, 53, 565–570; Angew. Chem. 2014, 126, 576–581
A. C. Filippou, B. Baars, O. Chernov, Y. N. Lebedev, and G. Schnakenbur
(See online at https://doi.org/10.1002/anie.201308433 https://doi.org/10.1002/ange.201308433) - Substituent effects and supramolecular interactions of titanocene(III) chloride: Implications for catalysis in single electron steps. J. Am. Chem. Soc. 2014, 136, 1663–1671
A. Gansäuer, C. Kube, K. Daasbjerg, R. Sure, S. Grimme, G. D. Fianu, D. V. Sadasivam, and R. A. Flowers II
(See online at https://doi.org/10.1021/ja4121567) - The photochemical route to octahedral iron(V). Primary processes and quantum yields from ultrafast mid-infrared spectroscopy. J. Am. Chem. Soc. 2014, 136, 10095–10103
H. Vennekate, D. Schwarzer, J. Torres-Alacan, and P. Vöhringer
(See online at https://doi.org/10.1021/ja5045133) - A practicable real-space measure and visualization of static electron-correlation effects. Angew. Chem. Int. Ed. 2015, 54, 12308–12313; Angew. Chem. 2015, 127, 12483–12488
S. Grimme and A. Hansen
(See online at https://doi.org/10.1002/anie.201501887 https://doi.org/10.1002/ange.201501887) - Cationic titanocene(III) complexes for catalysis in single electron steps. Angew. Chem. Int. Ed. 2015, 54, 7003–7006; Angew. Chem. 2015, 127, 7109–7112
A. Gansäuer, S. Hildebrandt, A. Michelmann, T. Dahmen, D. von Laufenberg, C. Kube, G. D. Fianu, and R. A. Flowers II
(See online at https://doi.org/10.1002/anie.201501955 https://doi.org/10.1002/ange.201501955) - EPR-based approach for the localization of paramagnetic metal ions in biomolecules. Angew. Chem. Int. Ed. 2015, 54, 182–1831; Angew. Chem. 2015, 127, 1847–1851
D. Abdullin, N. Florin, G. Hagelueken, and O. Schiemann
(See online at https://doi.org/10.1002/anie.201410396 https://doi.org/10.1002/ange.201410396) - Hydroxy-directed, fluoride catalyzed epoxide hydrosilylation for the synthesis of 1,4-diols. Angew. Chem. Int. Ed. 2015, 54, 6931–6934; Angew. Chem. 2015, 127, 7035–7038
Y.-Q. Zhang, N. Funken, P. Winterscheid, and A. Gansäuer
(See online at https://doi.org/10.1002/anie.201501729 https://doi.org/10.1002/ange.201501729) - Metal catalyzed functionalization of Michael-acceptors via reductive radical addition reactions. Angew. Chem. Int. Ed. 2015, 54, 14232–14242; Angew. Chem. 2015, 127, 14438–14448
J. Streuff and A. Gansäuer
(See online at https://doi.org/10.1002/anie.201505231 https://doi.org/10.1002/ange.201505231) - Si=P double bonds: Experimental and theoretical study of an NHC-stabilized phosphasilenylidene. Angew. Chem. Int. Ed. 2015, 54, 2739–2744; Angew. Chem. 2015, 127, 2777–2782
D. Geiß, M. I. Arz, M. Straßmann, G. Schnakenburg, and A. C. Filippou
(See online at https://doi.org/10.1002/anie.201411264 https://doi.org/10.1002/ange.201411264) - Si=Si double bonds: Synthesis of an NHC-stabilized disilavinylidene. Angew. Chem. Int. Ed. 2015, 54, 9980–9985; Angew. Chem. 2015, 127, 10118–10123
P. Ghana, M. I. Arz, U. Das, G. Schnakenburg, and A. C. Filippou
(See online at https://doi.org/10.1002/anie.201504494 https://doi.org/10.1002/ange.201504494) - Ultrafast dynamics of electrons in ammonia. Annu. Rev. Phys. Chem. 2015, 66, 97–118
P. Vöhringer
(See online at https://doi.org/10.1146/annurev-physchem-040214-121228) - Amide-substituted titanocenes in hydrogen-atom-transfer catalysis. Angew. Chem. Int. Ed. 2016, 55, 1523–1526; Angew. Chem. 2016, 128, 1546–1550
Y.-Q. Zhang, V. Jakoby, K. Stainer, A. Schmer, S. Klare, M. Bauer, S. Grimme, J. M. Cuerva, and A. Gansäuer
(See online at https://doi.org/10.1002/anie.201509548 https://doi.org/10.1002/ange.201509548) - Cycloaddition of P−C single bonds: Stereoselective formation of benzo-1,3,6,2- trioxaphosphepine complexes via a ditopic van der Waals complex. Angew. Chem. Int. Ed. 2016, 55, 12693–12697; Angew. Chem. 2016, 128, 12885–12889
P. Malik, G. Schnakenburg, A. Espinosa Ferao, and R. Streubel
(See online at https://doi.org/10.1002/anie.201606264 https://doi.org/10.1002/ange.201606264) - General, highly selective synthesis of 1,3- and 1,4-difunctionalized building blocks via regiodivergent epoxide opening (REO). Angew. Chem. Int. Ed. 2016, 55, 12030–12034; Angew. Chem. 2016, 128, 12209–12013
N. Funken, F. Mühlhaus, and A. Gansäuer
(See online at https://doi.org/10.1002/anie.201606064 https://doi.org/10.1002/ange.201606064) - Highly active titanocene catalysts for epoxide hydrosilylation: Synthesis, theory, kinetics, EPR spectroscopy. Angew. Chem. Int. Ed. 2016, 55, 7671–7675; Angew. Chem. 2016, 128, 7801–7805
D. Schwarz G. Henriques, K. Zimmer, S. Klare, A. Meyer, E. Rojo-Wiechel, M. Bauer, R. Sure, S. Grimme, O. Schiemann, R. A. Flowers II, and A. Gansäuer
(See online at https://doi.org/10.1002/anie.201601242 https://doi.org/10.1002/ange.201601242) - Strong evidence for a phosphanoxyl complex: formation, bonding and reactivity of ligated P- analogues of nitroxides. Angew. Chem. Int. Ed. 2016, 55, 14439–14443; Angew. Chem. 2016, 128, 14654–14658
T. Heurich, V. Nesterov, G. Schnakenburg, Z.-W. Qu, S. Grimme, K. Hazin, D. P. Gates, M. Engeser, and R. Streubel
(See online at https://doi.org/10.1002/anie.201608169 https://doi.org/10.1002/ange.201608169) - Synthesis of dihydropyrrolizine and tetrahydroindolizine scaffolds from pyrroles through titanocene(III) catalysis. Angew. Chem. Int. Ed. 2016, 55, 9719–9722; Angew. Chem. 2016, 128, 9871–9874
S. Hildebrandt and A. Gansäuer
(See online at https://doi.org/10.1002/anie.201603985 https://doi.org/10.1002/ange.201603985) - The electrochemical synthesis of polycationic clusters. Angew. Chem. Int. Ed. 2016, 55, 1173–1177; Angew. Chem. 2016, 128, 1188–1192
C. Schulz, J. Daniels, T. Bredow, and J. Beck
(See online at https://doi.org/10.1002/anie.201507644 https://doi.org/10.1002/ange.201507644) - An octanuclear metallosupramolecular cage designed to exhibit spin-crossover behaviour. Angew. Chem. Int. Ed. 2017, 56, 4930–4935; Angew. Chem. 2017, 129, 5012–5017
N. Struch, C. Bannwarth, T. Ronson, Y. Lorenz, B. Mienert, N. Wagner, M. Engeser, E. Bill, R. Puttreddy, K. Rissanen, J. Beck, S. Grimme, J. R. Nitschke, and A. Lützen
(See online at https://doi.org/10.1002/anie.201700832 https://doi.org/10.1002/ange.201700832) - The femtochemistry of a ferracyclobutadiene. Angew. Chem. Int. Ed. 2017, 56, 6901–6905; Angew. Chem. 2017, 56, 7005–7009
B. Wezisla, J. Lindner, U. Das, A.C. Filippou, and P. Vöhringer
(See online at https://doi.org/10.1002/anie.201702987 https://doi.org/10.1002/ange.201702987) - Time-resolved EPR and theoretical investigations of metal-free room-temperature triplet emitters. J. Am. Chem. Soc. 2017, 139, 12968–12975
H. Matsuoka, M. Retegan, L. Schmitt, S. Höger, F. Neese, and O. Schiemann
(See online at https://doi.org/10.1021/jacs.7b04561) - Versatile trityl spin labels for nanometer distance measurements on biomolecules in vitro and within cells. Angew. Chem. Int. Ed. 2017, 56, 177–181; Angew. Chem. Int. Ed. 2017, 56, 183–187
J. J. Jassoy, A. Berndhäuser, F. G. Duthie, S. P. Kühn, G. Hagelueken, and O. Schieman
(See online at https://doi.org/10.1002/anie.201609085 https://doi.org/10.1002/ange.201609085)