Detailseite
Projekt Druckansicht

Mathematische Probleme der nichtrelativistischen Quantenelektrodynamik

Fachliche Zuordnung Mathematik
Förderung Förderung seit 2023
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 531147062
 
Dieses Projekt befasst sich mit den mathematischen Herausforderungen der nichtrelativistischen Quantenelektrodynamik (QED) von Atomen (und Molekülen). Unsere Untersuchungen konzentrieren sich auf das Phänomen des Strahlungszerfalls und der Relaxation zum Grundzustand von angeregten Atomen. Die überschüssige Energie bei diesem Prozess wird in Form von Photonen emittiert. Da Photonen masselos sind, kann die Anzahl der emittierten Photonen im Prinzip unbegrenzt sein. Es wird nicht erwartet, dass dieses Infrarotproblem beim Strahlungszerfall von neutralen Atomen auftritt, aber es ist ein offenes Problem, dies zu beweisen. Wir gehen dieses Problem aus mehreren Richtungen an, indem wir moderne Werkzeuge aus der Spektral- und Streutheorie von Vielteilchen-Quantensystemen verwenden. — Ein weiteres Problem, an dem wir arbeiten, betrifft die Regularität und den räumlichen exponentiellen Abfall von gebundenen Zuständen eines Atoms in der QED. Es ist ein offenes Problem, wohlbekannte Ideen von Moser, Stampacchia und Trudinger auf dem Gebiet der elliptischen PDEs auf die QED auszudehnen, wo die Wellenfunktionen vektorwertig und mit einem endlichen Energiebereich verbunden sind, statt mit einem einzigen Eigenwert.
DFG-Verfahren Sachbeihilfen
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung