Detailseite
Präferenzielle Strömung im weak inertia Regime, visualisiert durch Mikro-PIV und Magnetresonanz-Geschwindigkeits-Bildgebung
Antragstellerinnen / Antragsteller
Dr. Sabina Haber-Pohlmeier; Professor Dr.-Ing. Holger Steeb
Fachliche Zuordnung
Strömungsmechanik
Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Mechanik
Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Mechanik
Förderung
Förderung seit 2023
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 524644451
Unser grundlegendes Verständnis über die Entwicklung physikalischer Prozesse, die während der ein- und mehrphasigen Strömung in zerklüfteten porösen Medien ablaufen, ist für die Wissenschaft von großer Bedeutung. Im Hinblick auf die praktischen Auswirkungen bedeutet es verbesserte Anwendungen in den Bereichen unterirdischer Hydrologie, Geophysik, Reservoir Engineering und Biomechanik. Während niedrige Geschwindigkeiten im Bereich von Kriechströmungen am besten durch die Darcy-Gleichung beschrieben werden, muss man für deutlich höhere Geschwindigkeiten Terme höherer Ordnung zusätzlich berücksichtigen, wie von Forchheimer vorgeschlagen. Es gibt eine große Anzahl von Arbeiten über das reine Kriechströmungs- und das rein turbulente Strömungsregime, aber nicht für den Bereich dazwischen, d.h. für das „weak-inertia“ Regime. In Anbetracht dieses Mangels an experimentellen Beweisen wollen wir genau für diesen Bereich Fließfelder in Systemen zunehmender Komplexität von 2D bis 3D räumlich hochaufgelöst abbilden. Zunächst untersuchen wir 2D-Micromodelle mit einem einzelnen Kanal, einer sich wiederholenden Kanal-Poren-Einheit und einem 2D-Riß mit rauen Porenoberflächen. Diese Micromodelle erlauben die Kombination der 2D Mikro-Partikel-Imaging-Velocimetry (micro-PIV) mit 3D flusssensitiver Magnetresonanztomographie (MRT). Um die Auflösungen beider Methoden anzupassen, werden mit der MRT auch ortsaufgelöste Propagatoren bestimmt, die eine Auflösung der Geschwindigkeitsfelder innerhalb eines Voxels erlauben. Sie dienen dann als Proxys für Geschwindigkeitsfelder und können auf 3D- und undurchsichtige Systeme angewendet werden. In einem zweiten Schritt untersuchen wir das erste 3D-System, einen homogenen porösen Glaszylinder. Bei kleinen Geschwindigkeiten erwartet man „bulk“-Effekte durch alle Poren im Sinne der Darcy-Beziehung. Steigen die Reynoldszahlen an, bilden sich immer größere Strömungsschatten kombiniert mit gestreckten Fließpfaden aus. Die bisher gewonnenen Erkenntnisse werden nun im 2. Hauptteil des Projekts für die Untersuchung von Bohrkernen mit Rissen genutzt. Um die Strömung zu untersuchen, wird ein natürlicher Gesteinskern vertikal gefrackt, eine Technik, die an der Universität Stuttgart nun zur Verfügung steht. In Bezug auf die MRT wird die Verwendung einer multi-slice Pulssequenz mit bipolaren Gradientenpaaren notwendig. Der Unterschied zu den bisher untersuchten Modellsystemen besteht darin, dass die Strömung durch Wasseraustausch zwischen Porensystem und Riß kontrolliert wird. Es ist daher zu erwarten, daß sich beim Übergang vom Darcy- zum „weak-inertia“ Regime präferentielle Fließmuster neben stationären Bereichen entwickeln. Diese experimentell gewonnenen 3D-Fließfelder stehen dann zur Verfügung, um theoretische Ansätze wie die Forchheimer-Relation auf ihre Gültigkeit und ihre Grenzen zu prüfen und weiter zu entwickeln.
DFG-Verfahren
Sachbeihilfen
Internationaler Bezug
Neuseeland
Mitverantwortlich
Dr. Andreas Pohlmeier
Kooperationspartner
Professor Dr. Petrik Galvosas