Detailseite
Ermittlung der großräumigen Sensitivität von Grundwasserressourcen gegenüber dem Klimawandel
Antragsteller
Dr. Andreas Wunsch
Fachliche Zuordnung
Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Förderung
Förderung in 2022
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 513270661
Die Klimakrise verändert zunehmend die räumliche und zeitliche Verfügbarkeit von Grundwasser, der wichtigsten globalen Süßwasserressource. Das quantitative Verständnis der Interaktion von Grundwasser und Klima, vor allem auf nationaler und kontinentaler Skala, ist wichtig für ein optimal angepasstes Grundwassermanagement. Bisher ist das Wissen über die großskalige Sensitivität der Grundwasserressourcen auf den Klimawandel jedoch sehr limitiert. Das Ziel des hier vorgestellten Projektes ist die Erforschung der Auswirkungen des Klimawandels und der damit einhergehenden Umweltveränderungen auf den quantitativen Zustand von Grundwasserressourcen auf national-kontinentaler Skala. Etablierte prozessbasierte Modelle (PBMs) zur hydro(geo)logischen Modellierung auf großer Skala (meist „Global Hydrological Models“ - GHMs) sind starke Vereinfachungen der Realität und unterliegen daher deutlichen Limitationen und Unsicherheiten. Im Gegensatz zu anderen PBMs, weisen GHMs daher begrenzte physikalische Konsistenz und Interpretierbarkeit auf und ihre Anwendung kann zu irreführenden Schlussfolgerungen über die Verfügbarkeit von Grundwasser vor dem Hintergrund des Klimawandels führen. Vor allem die Übertragbarkeit auf datenarme Regionen ist nur eingeschränkt möglich. In den letzten Jahren haben sich Deep Learning (DL) Modelle als präziser und leicht übertragbarer alternativer Ansatz in der Modellierung von Wasserressourcen etabliert. Für die Modellierung von Oberflächengewässern wurde zudem gezeigt, dass DL auch spezialisierte PBMs übertreffen kann. Das vorgeschlagene Projekt möchte sich die gewonnenen Erkenntnisse zunutze machen und ein DL-Modell zur Untersuchung der Sensitivität von Grundwasser auf den Klimawandel auf kontinentaler Skala aufbauen. Hierfür wird ein „big data“ Ansatz gewählt, der Daten von >2200 Einzugsgebieten in Nordamerika nutzt (Erweiterung denkbar). Ein solches Modell kann lernen, Wissen über verschiedene Regionen zu transferieren, gewinnt somit stark an Generalisierungsfähigkeit (z.B. auf datenarme Regionen) und schlussendlich an Vertrauenswürdigkeit. Weiterhin soll das Problem von fehlenden, interpretierbaren und physikalisch konsistenten Modellen im nationalen Maßstab angegangen werden, indem physikalisches Wissen und Prozesse in die DL-Modelle eingebaut werden. Durch diese Ansätze soll ein plausibles, interpretierbares und vor allem vertrauenswürdiges Modell entstehen, welches sich zur Untersuchung von Klimawandelszenarien eignet. Die genannten Aspekte sind hierbei besonders kritisch, da für Zeiträume in der Zukunft keine Validierung möglich ist. Das entwickelte Modell dient anschließend der Beantwortung der übergeordneten Fragestellung, und die Auswirkungen des Klimawandels auf die Grundwasserressourcen werden anhand der Daten von Klimamodellen auf Basis von RCP bzw. SSP Szenarien untersucht. Weiterhin werden spezialisierte Untersuchungen (Szenarien) zum Einfluss einzelner Einflussfaktoren (z.B. Landnutzung) durchgeführt.
DFG-Verfahren
WBP Stipendium
Internationaler Bezug
Kanada
Gastgeber
Professor Ali A. Ameli, Ph.D.