Detailseite
ReCAp - Die Bedeutung der Auswirkungen des Klimawandels und anthropogener Aktivität für die Bildung von DNAPL-Quellzonen
Antragsteller
Dr. Christian Engelmann
Fachliche Zuordnung
Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Förderung
Förderung seit 2022
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 499973567
Die Kontamination des Untergrunds durch nicht mischbare Schwerphasen (DNAPLs) birgt nachteilige Auswirkungen auf Mensch und Umwelt und gefährdet die Sicherheit von Grundwasserressourcen. ‚Natural Attenuation‘ von wassergelösten DNAPLs ist ein typischer Sanierungsansatz bei DNAPL-Schadensfällen. Dennoch bleibt das Schicksal von derartigen Standorten trotz einer Reihe von Untergrund-Erkundungsstechnologien als langfristige Kontaminationsherde unklar. Grund hierfür sind unzureichende Daten und Kenntnisse über Quellzonen. Zusätzlich können Klimawandel und anthropogene Aktivität gemeinsam neue Gefahrenpotenziale schaffen. Letztere induzieren hydraulische und thermische Stressoren, welche potenziell die Quellzonen beeinflussen. Ein solides Verständnis der Prozesse, die mit der Bildung von DNAPL-Quellzonen unter sich ändernden Bedingungen verbunden sind, ist entscheidend, um eine effiziente Bewertung kontaminierter Standorte sicherzustellen.Das Projekt ReCAp zielt darauf ab, die transiente Dynamik der DNAPL-Quellzonenbildung systematisch zu untersuchen, um die Relevanz sich ändernder externer Stressoren im Vergleich zu anderen Systemeigenschaften zu bewerten. Durch den Einsatz experimenteller und modellbasierter Methoden wird ein vereinfachtes Dreiphasen-Strömungssystem im Labormaßstab evaluiert (physische Aquifermodelle). Sich ändernde externe Stressoren (hydraulisch, thermisch) werden durch Signalvariationen (Grundwasserstand, Untergrundtemperatur) nachgebildet. Dazu werden hydrologische Mess- und Klimaprojektionsdaten repräsentativer Standorte analysiert, um eine Reihe von Simulationsszenarien im Labormaßstab zu definieren. ‚Reflective Optical Imaging‘ in Kombination mit einem Bildverarbeitungs- und Analyse-Framework dient der Generierung experimenteller Beobachtungsdaten für die Phasensättigungsverteilung. Letztere Daten werden zur Kalibrierung eines numerischen Mehrphasenströmungsmodells verwendet, das in der Softwaresuite TOUGH implementiert ist. Hierzu wird eine Zielfunktion mit unterschiedlichen Kriterien bezüglich Proxy-Quellzoneneigenschaften definiert und an einen semi-automatischen inversen Modellierungsansatz (z. B. PEST++) gekoppelt. Eine statistische Analyse unter Variation von Messunsicherheits-behafteten Parametern wird abschließend durchgeführt, um die Relevanz sich ändernder externer Stressoren im Vergleich zu den Eigenschaften des Untergrunds und der Fluide abzugrenzen.Die wissenschaftlichen Ergebnisse sollen nicht nur für ein verbessertes Verständnis der Quellzonenbildung unter sich ändernden Systembedingungen sorgen, sondern auch zur Optimierung von Labormethoden zur Visualisierung der Phasenmigrationsdynamik beitragen. In Zukunft können die Projektergebnisse die Grundlage für die Entwicklung prozessgesteuerter Modelle sein, die sorgfältig anhand robuster Beobachtungsdaten im Labormaßstab verifiziert werden.
DFG-Verfahren
Sachbeihilfen
Internationaler Bezug
Australien, Norwegen, USA
Kooperationspartnerinnen / Kooperationspartner
Professorin Dr. Helen Kristine French; Kaveh Sookhak Lari, Ph.D.; Professor Charles J. Werth, Ph.D.