Project Details
Geometric PDEs and Symmetry (B04)
Subject Area
Mathematics
Term
since 2021
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 427320536
Many important geometric partial differential equations are Euler–Lagrange equations of natural functionals. Amongst the most prominent examples are harmonic and biharmonic maps between Riemannian manifolds (and their generalisations), Einstein manifolds and minimal submanifolds. Since commonly it is extremely difficult to obtain general structure results concerning existence, index and uniqueness, it is natural to examine these partial differential equations under symmetry assumptions.
DFG Programme
Collaborative Research Centres
Subproject of
SFB 1442:
Geometry: Deformations and Rigidity
Applicant Institution
Universität Münster
Project Heads
Professor Dr. Christoph Böhm, since 7/2024; Professorin Dr. Anna Siffert, since 7/2021