Project Details
Projekt Print View

Understanding HCMV-specific T-cell immunity in immunocompetent and immunocompromised individuals to advance adoptive T-cell therapy

Subject Area Immunology
Hematology, Oncology
Virology
Term since 2019
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 398367752
 
The induction of HCMV-specific T-cell responses in single individuals and their capacity to kill infected cells and to confer memory responses is still incompletely understood. More detailed knowledge about differences in the respective T-cell populations, in peptide presentation in the context of single HLA-I molecules that are expressed on HCMV-infected as well as cross-presenting APCs, and under the influence of viral inhibitors of antigen presentation is important. Despite the tremendous success of adoptive T-cell therapies in immunosuppressed patients with viral complications, reliable biomarkers predicting the therapeutic outcome are lacking. Furthermore, the efficacy of antiviral T-cell products for patients under immunosuppression still needs to be improved. This joint project aims at advancing adoptive T-cell therapy beyond the current state-of-the-art as a personalized and Good Manufacturing Practice (GMP)-compliant T-cell immunotherapy. In close collaboration with the other RU members, we will combine established approaches to (i) identify HCMV peptides that allow re-stimulation of clinically relevant HCMV-specific T cells (P01, P03, P07, P09 Z01), (ii) characterize clinical-grade small-scale T-cell products and identify HCMV-specific TCR sequences with high antiviral potential (P06, P07, P09, P01), (iii) analyze the antiviral efficacy of HCMV-specific T cells re-stimulated by directly or cross-presenting APCs (P05, P06, P07), and (iv) analyze the role of immunosuppression on the development and persistence of T-cell responses against HCMV (P06). Results will impact patient monitoring, T-cell donor selection and the design of HCMV-specific T-cell products. We aim to improve current immunotherapeutic strategies also with respect to immunosuppression and further treatment options using genetically modified effector cells (P09).
DFG Programme Research Units
 
 

Additional Information

Textvergrößerung und Kontrastanpassung