Detailseite
Vollständige Bestimmung der akustischen Materialparameter von Polymeren II
Antragstellerinnen / Antragsteller
Professorin Dr.-Ing. Carolin Birk; Professor Dr.-Ing. Bernd Henning
Fachliche Zuordnung
Messsysteme
Förderung
Förderung von 2018 bis 2023
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 409779252
Die Verwendung von Polymeren allgemein und deren Einsatz speziell in Ultraschall-Messsystemen, nimmt aktuell stark zu. Die Entwicklung der komplexen Messanordnungen erfordert dabei den Einsatz computergestützter Entwurfsmethoden. Diese liefern jedoch nur realitätsnahe Ergebnisse, wenn physikalisch-korrekte Materialgesetze und präzise Materialparameter bekannt sind. Die viskoelastischenund temperaturabhängigen Eigenschaften von Polymeren werden bisher auf Basis standardisierter Prüfverfahren ermittelt, die jedoch nur im quasi-statischen bzw. niederfrequenten Bereich gültig sind. Die angestrebten Einsatzgebiete im Ultraschallbereich erfordern somit neue Messmethoden, die Materialparameter von Polymeren im Hochfrequenzbereich (MHz) möglichst zerstörungsfrei und hoch präzise zu bestimmen.Von den Antragstellern wurden bereits erfolgreich Verfahren zur Materialcharakterisierung auf Basis wellentheoretischer Ansätze entwickelt. Hierzu wird ein inverses Verfahren genutzt, bei dem die Abweichungen von Messdaten und mittels eines Vorwärtsmodells simulierten Daten (digitaler Zwilling), unterstützt durch Optimierungsverfahren, minimiert werden. Als Probekörper werden extrudierte zylindrische Polymerproben eingesetzt, deren Materialverhalten als transversal-isotrop angenommen wird. Im Vorgängerprojekt konnte durch den Einsatz nicht-uniformer Schallanregung mittels segmentierter Schallwandler (Sektor- und Ringanordnung) insbesondere die Unsicherheit bzgl. der ermittelten Scherparameter deutlich reduziert werden. Unter Ausnutzung der semi-analytischen Lösungscharakteristik und der Symmetrie der Probekörpergeometrie gelang es, auch die Rechenzeit für das SBFEM-basierte Vorwärtsmodell erheblich zu reduzieren. Außerdem konnte die Optimierung der Parameteridentifikation durch Verwendung zusätzlicher Ableitungsinformationen signifikant beschleunigt werden.Aus der nicht-uniformen bzw. segmentierten Schallanregung ergeben sich jedoch neue Herausforderungen. So müssen insbesondere Sender und Empfänger bei der Messung präzise zueinander ausgerichtet sein, um die Äquivalenz zur Simulation zu gewährleisten. Um die hieraus resultierenden Unsicherheiten zu vermeiden, soll nun nur noch ein segmentierter Schallwandler als Sender und Empfänger eingesetzt werden. Hieraus erhöhen sich die Anforderungen an die Systemcharakterisierung und Signalverarbeitung deutlich. Der Optimierungsalgorithmus zur Parameteridentifikation ist noch zu verbessern. Die bereits im Vorgängerprojekt identifizierte, sehr robuste Kostenfunktion wird nun genutzt, um die Zylindergeometrie gezielt zu optimieren und die Eindeutigkeit der gefundenen Parametersätze zu sichern. Mittels temperaturabhängiger Messungen soll die Stabilität des verbesserten Mess- und Optimierungsverfahrens überprüft und nachgewiesen werden. Neue theoretische Ansätze zur Modellierung der Dämpfungseigenschaften sind hinsichtlich ihrer Gültigkeit und Anwendbarkeit zu überprüfen und mit klassischen Dämpfungsmodellen zu vergleichen.
DFG-Verfahren
Sachbeihilfen