Detailseite
Projekt Druckansicht

Quantenautomorphismen von Graphen

Fachliche Zuordnung Mathematik
Förderung Förderung von 2017 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 387699909
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

Das Ziel des Projekts war es, Symmetrien von endlichen Graphen im Rahmen einer “Quantenmathematik” zu untersuchen. Unter einem Graphen versteht man ein Objekt, das aus Punkten (“Vertices”) besteht, die jeweils durch Linien (“Kanten”) verbunden sein können - oder auch nicht. Ein solcher Graph kann nun Symmetrien besitzen: Er könnte beispielsweise durch eine Spiegelung oder eine Drehung in sich selbst überführt werden. Etwas allgemeiner werden die Symmetrien eines Graphen durch seine Automorphismengruppe beschrieben, also durch die Menge all jener Permutationen der Vertices, die die Verbindungen durch Kanten erhalten. In der Quantenmathematik kennen wir jedoch mehr Möglichkeiten zu permutieren -wir können “quantenpermutieren”. So erhalten wir a priori mehr Symmetrien: nämlich Quantensymmetrien. Die Quantensymmetrien eines Graphen werden durch eine Quantengruppe beschrieben: seine Quantenautomorphismengruppe. Diese Objekte werden erst seit wenigen Jahren untersucht und wir wissen noch sehr wenig darüber. In unserem Projekt haben wir viele neue Erkenntnisse über Quantensymmetrien von Graphen gewonnen. So haben wir in einer recht großen Klasse bestimmt, ob es wirklich einen Vorteil bringt, die Vertices eines gegebenen Graphen quantenpermutieren zu können - oder ob all seine Symmetrien bereits durch seine Automorphismengruppe beschrieben werden. Zudem haben wir Quantenautomorphismengruppen konkret berechnet. In diesem Zusammenhang haben wir u.a. verschiedene computerbasierte Werkzeuge entwickelt, mit denen man einen gegebenen Graphen auf die Existenz von echten Quantensymmetrien testen kann. Zudem haben wir probabilistische Aussagen über Bäume treffen können (die eine Unterklasse der Graphen bilden): Wählt man zufällig einen Graphen, der zudem ein Baum ist, so wird dieser fast immer Quantensymmetrien besitzen. Wir waren auch an überraschenden, neuartigen Entwicklungen beteiligt, die das Konzept von Quantensymmetrien von Graphen mit der Quanteninformationstheorie verbinden und dabei aufzeigen, dass Methoden aus der Quantenmathematik letztlich auch mehr Erkenntnisse über die “klassische” Mathematik liefern. Es wird immer offensichtlicher, dass die Quantensymmetrie ein starkes und weitreichendes Phänomen darstellt. Da all unsere Untersuchungen der Grundlagenforschung zuzurechnen sind, ergeben sich keine sofort verwertbaren Anwendungen etwa in der Industrie. Es ist jedoch zu erwarten, dass die Quantenmathematik letztlich - mit Verzögerung - zu durchschlagenden Ergebnissen auch im Bereich der Anwendungen im Alltag führen wird. Mit unserem Projekt haben wir einen Beitrag zu einem ersten, fundamentalen Verständnis geleistet.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung