DECOR: Der Einfluss der Dynamik auf die Zusammensetzung und den Transport von klimarelevanten Spurenstoffen in der extratropischen oberen Troposphäre und unteren Stratosphäre
Zusammenfassung der Projektergebnisse
We investigate the distribution of climate relevant trace species at the Arctic and midlatitude tropopause and lower stratosphere with HALO, their chemical and microphysical variability as well as their radiative impact. The data have been compared to chemistry transport models and numerical weather predictions models, helping to improve the representation of transport and chemical processing of theses species in this dynamical region of the atmosphere. We address the following questions: 1.) Ozone chemistry: What is the distribution of climate relevant trace species at the tropopause? How does transport and chemical processing impact the chlorine budget in the lowermost polar stratosphere during the Arctic winter? An unprecedented data set of inorganic chlorine species has been obtained during the POLSTRACC mission with AIMS on HALO. High amounts of active chlorine can be found in the lower polar stratosphere during cold Arctic winters. The observed chlorine partitioning is well represented in CTMs however the comparison with the measurement reveal a high-bias of HCl in the lower stratosphere. 2.) Water vapor: How well can we measure water vapor in the UTLS? How is it represented in NWP models? What mechanism drives transport of tropospheric water vapor into the stratosphere? Water vapor measurements have been compaired by different means of detection principles, winning back a large confidence in the UTLS water vapor measurements. These HALO measurements reveal a wet-bias of ECMWF data at the tropopause, which potential impact of the representation of clouds in these models. Mechanisms that induce transport of water vapor into the stratosphere have been investigated during an orographig mountain wave events. 3.) Arctic Cirrus Clouds: What are the optical properties of polar stratospheric clouds and how do they form? How does the cirrus ice water content at the tropopause feedback on the local radiation budget? Arctic cirrus and polar stratospheric clouds have been observed from HALO with the WALES lidar and the WARAN ice water content measurements. New formation pathways of the PSCs were proposed. Further, the impact of cirrus clouds on the radiation budget were investigated showing a local heating effect that enhances the static stability at the tropopause with feedbacks on STE.
Projektbezogene Publikationen (Auswahl)
- The airborne mass spectrometer AIMS – Part 1: AIMS-H2O for UTLS water vapor measurements, Atmos. Meas. Tech., 9, 939-953
Kaufmann, S., Voigt, C., Jurkat, T., Thornberry, T., Fahey, D. W., Gao, R.-S., Schlage, R., Schäuble, D., and Zöger, M.
(Siehe online unter https://doi.org/10.5194/amt-9-939-2016) - The airborne mass spectrometer AIMS – Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS, Atmos. Meas. Tech., 9, 1907–1923
Jurkat, T., Kaufmann, S., Voigt, C., Schäuble, D., Jeßberger, P., and Ziereis, H.
(Siehe online unter https://doi.org/10.5194/amt-9-1907-2016) - Depletion of ozone and reservoir species of chlorine and nitrogen oxide in the lower Antarctic polar vortex measured from aircraft, Geophys. Res. Lett., GRL55959
Jurkat, T., C. Voigt, S. Kaufmann, J.-U. Grooß, H. Ziereis, A. Dörnbrack, P. Hoor, H. Bozem, A. Engel, H. Bönisch, T. Keber, T. Hüneke, K. Pfeilsticker, A. Zahn, K.A. Walker, C.D. Boone, P.F. Bernath, and H. Schlager
(Siehe online unter https://doi.org/10.1002/2017GL073270) - ML-CIRRUS - The airborne experiment on natural cirrus and contrail cirrus with the high-altitude long-range research aircraft HALO, Bull. Amer. Meteorol. Soc.
Voigt, C., Schumann, U., Minikin, A., Abdelmonem, A., Afchine, A., Borrmann, S., Boettcher, M., Buchholz, B., Bugliaro, L., Costa, A., Curtius, J., Dollner, M., Dörnbrack, A., Dreiling, V., Ebert, V., Ehrlich, A., Fix, A., Forster, L., Frank, F., Fütterer, D., Giez, A., Graf, K., Grooß, J.-U., Groß, S., Heimerl, K., Heinold, B., Hüneke, T., Järvinen, E., Jurkat, T., Kaufmann, S., Kenntner, M., Klingebiel, M., Klimach, T., Kohl, R., Krämer, M., Krisna, T. C., Luebke, A., Mayer, B., Mertes, S., Molleker, S., Petzold, A., Pfeilsticker, K., Port, M., Rapp, M., Reutter, P., Rolf, C., Rose, D., Sauer, D., Schäfler, A., Schlage, R., Schnaiter, M., Schneider, J., Spelten, N., Spichtinger, P., Stock, P., Walser, A., Weigel, R., Weinzierl, B., Wendisch, M., Werner, F., Wernli, H., Wirth, M., Zahn, A., Ziereis, H., and Zöger, M.
(Siehe online unter https://doi.org/10.1175/BAMS-D-15-00213.1) - Mountain waves modulate the water vapor distribution in the UTLS, Atmos. Chem. Phys., 17, 14853-14869
Heller, R., Voigt, C., Beaton, S., Dörnbrack, A., Kaufmann, S., Schlager, H., Wagner, J., Young, K., and Rapp, M.
(Siehe online unter https://doi.org/10.5194/acp-17-14853-2017) - Airborne limb-imaging measurements of temperature, HNO3, O3, ClONO2, H2O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS, Atmos. Meas. Tech., 11, 4737-4756
Johansson, S., Woiwode, W., Höpfner, M., Friedl-Vallon, F., Kleinert, A., Kretschmer, E., Latzko, T., Orphal, J., Preusse, P., Ungermann, J., Santee, M. L., Jurkat-Witschas, T., Marsing, A., Voigt, C., Giez, A., Krämer, M., Rolf, C., Zahn, A., Engel, A., Sinnhuber, B.-M., and Oelhaf, H.
(Siehe online unter https://doi.org/10.5194/amt-11-4737-2018) - Dynamics and composition of the Asian summer monsoon anticyclone, Atmos. Chem. Phys., 18, 5655-5675
Gottschaldt, K.-D., Schlager, H., Baumann, R., Cai, D. S., Eyring, V., Graf, P., Grewe, V., Jöckel, P., Jurkat-Witschas, T., Voigt, C., Zahn, A., and Ziereis, H.
(Siehe online unter https://doi.org/10.5194/acp-18-5655-2018) - Ice particle sampling from aircraft – influence of the probing position on the ice water content, Atmos. Meas. Tech., 11, 4015-4031
Afchine, A., Rolf, C., Costa, A., Spelten, N., Riese, M., Buchholz, B., Ebert, V., Heller, R., Kaufmann, S., Minikin, A., Voigt, C., Zöger, M., Smith, J., Lawson, P., Lykov, A., Khaykin, S., and Krämer, M.
(Siehe online unter https://doi.org/10.5194/amt-11-4015-2018) - Intercomparison of mid-latitude tropospheric and lower stratospheric water vapor measurements and comparison to ECMWF humidity data, Atmos. Chem. Phys.
Kaufmann, S., Voigt, C., Heller, R., Jurkat-Witschas, T., Krämer, M., Rolf, C., Zöger, M., Giez, A., Buchholz, B., Ebert, V., Thornberry, T., and Schumann, U.
(Siehe online unter https://doi.org/10.5194/acp-18-16729-2018) - Widespread polar stratospheric ice clouds in the 2015–2016 Arctic winter – implications for ice nucleation, Atmos. Chem. Phys., 18, 15623-15641
Voigt, C., Dörnbrack, A., Wirth, M., Groß, S. M., Pitts, M. C., Poole, L. R., Baumann, R., Ehard, B., Sinnhuber, B.-M., Woiwode, W., and Oelhaf, H.
(Siehe online unter https://doi.org/10.5194/acp-18-15623-2018) - 2019: POLSTRACC: Airborne Experiment for Studying the Polar Stratosphere in a Changing Climate with the High Altitude and Long Range Research Aircraft (HALO). Bull. Amer. Meteor. Soc., 100, 2634–2664
Oelhaf H., B.-M. Sinnhuber, W. Woiwode, H. Bönisch, H. Bozem, A. Engel, A. Fix, F. Friedl-Vallon, J. Grooß, P. Hoor, S. Johansson, T. Jurkat-Witschas, S. Kaufmann, M. Krämer, J. Krause, E. Kretschmer, D. Lörks, A. Marsing, J. Orphal, K. Pfeilsticker, M. Pitts, L. Poole, P. Preusse, M. Rapp, M. Riese, C. Rolf, J. Ungermann, C. Voigt, C. M. Volk, M. Wirth, A. Zahn and H. Ziereis Oelhaf, H.,et al.
(Siehe online unter https://doi.org/10.1175/BAMS-D-18-0181.1) - Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016, Atmos. Chem. Phys., 19, 10757–10772
Marsing, A., Jurkat-Witschas, T., Grooß, J.-U., Kaufmann, S., Heller, R., Engel, A., Hoor, P., Krause, J., and Voigt, C.
(Siehe online unter https://doi.org/10.5194/acp-19-10757-2019)