Detailseite
Projekt Druckansicht

Globale äquivariante Homotopietheorie II

Fachliche Zuordnung Mathematik
Förderung Förderung von 2015 bis 2024
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 269311553
 
Homotopietheorie ist ein Teilgebiet der reinen Mathematik, das diejenigen Aspekte geometrischer Objekte untersucht, die unter kontinuierlichen Deformationen erhalten bleiben. Sie steht damit an der Schnittstelle zwischen der Welt der stetigen und glatten Objekte (Geometrie und Analysis) und der diskreten Welt (Algebra und Kombinatorik). Charakteristisch für äquivariante Homotopietheorie ist die zusätzliche Präsenz von Symmetrien, die von allen Deformationen respektiert werden müssen. Typische Aufgaben sind die Klassifikation geometrischer Objekte bestimmter Art mit vorgegebener Symmetrie, oder der Abbildungen zwischen ihnen.Dieses Projekt widmet sich äquivarianten Phänomenen, die gleichzeitig und in verträglicher Weise für alle Symmetrien existieren, die also "universelle" oder "globale" Symmetrie aufweisen. Dabei sollen verschiedene grundlegende Fragestellungen der globalen äquivarianten Homotopietheorie für kompakte Liegruppen untersucht und der dafür notwendige Formalismus entwickelt werden.
DFG-Verfahren Schwerpunktprogramme
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung