The cornea is a well established model to analyze the mechanisms of blood and lymphatic vessel growth (angiogenesis and lymphangiogenesis). Advantages of the cornea as a model are its physiological avascularity and transparency. Nonetheless, following inflammation experimentally as in patients, both blood and lymphatic vessels arising from pre-existing vessels in the corneal limbus can grow into the cornea. In patients this not only reduces vision but also increases the risk for immune reactions after subsequent corneal transplantation. Previous data from our group demonstrate that corneal lymphangiogenesis differs strain-dependently between mouse strains under inflammatory conditions and additionally in the limus of the healthy resting cornea. However, the underlying genetic causes of the inter-individual differences have not been studied in detail yet. Therefore, the focus of the project lies on the identification of candidate genes which are responsible for the observed strain dependent differences and on the analysis of molecular pathways of novel lymphangioregulatory candidates. Targeting of novel endogenous regulators could not only reduce immune reactions and promote graft survival after (corneal) transplantation but also could be used to treat tumors with lymphogenic metastasis and regulate inflammatory processes.
DFG Programme
Research Units