Detailseite
Projekt Druckansicht

Nano-Engineering von Hochkonverter- und Abkonverter-Materialien zur Erhöhung der Quantenausbeute und Untersuchungen des Einflusses der Photonenzustandsdichte auf die Wahrscheinlichkeit für Förster-Energietransfer

Antragsteller Dr. Stefan Fischer
Fachliche Zuordnung Experimentelle Physik der kondensierten Materie
Festkörper- und Oberflächenchemie, Materialsynthese
Physikalische Chemie von Festkörpern und Oberflächen, Materialcharakterisierung
Förderung Förderung von 2014 bis 2016
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 263646147
 
Erstellungsjahr 2017

Zusammenfassung der Projektergebnisse

Due to advances in the literature and the obstacles of highly efficient and narrow emitting NIR quantum dots, the focus of this previously proposed project was shifted to innovative synthesis and characterization of lanthanide-based nanocrystals to gain a better structural control of the nanocrystals as well as a deeper understanding of the photo physical properties. The expertise on shelling methods in the Alivisatos lab was used to explore an epitaxial shell growth method using liquid shell precursors. Tuning the injection rate of shell precursors allowed significant control over the growth rate on the different crystal facets which resulted in the fabrication of high quality and monodisperse nanocrystals. Now synthesis of highly luminescent complex anisotropic core/multishell structures are possible which promise interesting optical properties. The shelling method was also used to grow isotropic inert shells with different thicknesses around an optically active upconverting core nanocrystal. Carefully studying the photo physical properties of these core/shell by time-resolved and calibrated photoluminescence enabled the unraveling of the surface quenching rates of all relevant energy levels in Er 3+ and Yb3+. Besides the unprecedented high upconversion quantum yield for 980 nm to visible photons of 4% at 63 W/cm2, the study demonstrated a novel effect called surface quenching enhanced downshifting (SQAD) which results in conversion of 980 nm to roughly 1500 nm photons with quantum yields above 16%. These results will pioneer future studies on surface related quenching processes in lanthanide-based nanomaterials.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung