Detailseite
Bayessches Lernen einer hierarchischen Repräsentation von Sprache aus gesprochener Eingabe
Antragsteller
Professor Dr.-Ing. Reinhold Häb-Umbach
Fachliche Zuordnung
Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing
Förderung
Förderung von 2014 bis 2018
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 260050394
Das Ziel dieses Projekts ist das Erlernen einer hierarchischen Repräsentation von Sprache alleine aus dem akustischen Sprachsignal. Auf der untersten Ebene werden die akustischen Elementareinheiten, d.h. Phoneme oder ähnliche Wortuntereinheiten, entdeckt und Modelle dafür trainiert, während auf der nächsten Ebene die lexikalischen Einheiten, d.h. die Wörter, segmentiert und Wahrscheinlichkeiten für sie gelernt werden sollen. Schließlich sollen semantisch interpretierbare Wortkategorien gefunden werden. Besondere Aufmerksamkeit wird darauf gelegt, dass der Wortschatz im Prinzip unbegrenzt ist und dass gesprochene Sprache eine extreme Variabilität besitzt. Beiden Umständen wird durch Verwendung eines Bayesschen Ansatzes Rechnung getragen. Um zu ermöglichen, dass das Vokabular mit der Menge der Eingangssprache wachsen kann, werden nichtparametrische Bayes'sche Methoden verwendet, insbesondere solche, die auf Dirichlet und Pitman-Yor Prozessen basieren, bei denen die Anzahl der Parameter vorab nicht festgelegt werden muss sondern mit der Menge der zur Verfügung stehenden Daten wachsen kann. Die Variabilität der gesprochenen Eingabe führt zu Mehrdeutigkeiten und Fehlern bei der Entdeckung der Wortuntereinheiten. Diesen wird dadurch begegnet, dass vorschnelle Entscheidungen über die Phonemidentität vermieden werden und Phonem- und Worterkennung in einem gemeinsamen probabilistischen Modell erfolgen, für das effiziente Inferenzverfahren entwickelt werden sollen. Neben Anwendungen in der Sprachverarbeitung sind die zu entwickelnden Methoden auch für andere Lernprobleme aus sequentiellen, hochvariablen Sensordaten mit einer unbekannten Anzahl von zu lernenden Modellen von Interesse.
DFG-Verfahren
Schwerpunktprogramme
Teilprojekt zu
SPP 1527:
Autonomes Lernen