Detailseite
Das Fluktuations-Dissipations-Theorem, Stochastik und klimaabhängige Subgitterskalenparametrisierungen für effiziente Klimamodelle
Antragsteller
Professor Dr. Ulrich Achatz
Fachliche Zuordnung
Physik und Chemie der Atmosphäre
Statistische Physik, Nichtlineare Dynamik, Komplexe Systeme, Weiche und fluide Materie, Biologische Physik
Theoretische Chemie: Moleküle, Materialien, Oberflächen
Statistische Physik, Nichtlineare Dynamik, Komplexe Systeme, Weiche und fluide Materie, Biologische Physik
Theoretische Chemie: Moleküle, Materialien, Oberflächen
Förderung
Förderung von 2014 bis 2019
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 254867285
In verschiedenen Anwendungsbereichen der Klimamodellierung, z.B. Paläoklimatologie oder Sensitivitätsstudien, besteht Bedarf nach einem besonders effizienten Atmosphärenmodul. Niedrigdimensionale Modelle, basierend auf empirisch-orthogonalen Funktionen (EOF), mit einer empirischen linearen Parametrisierung der nicht aufgelösten Subgitterskalen (SGS), können viele Aspekte der Dynamik eines klassischen allgemeinen Zirkulationsmodells reproduzieren. Sie bieten sich somit in diesem Zusammenhang als interessantes Werkzeug an. Ein verbleibendes Problem war bisher die Klimasensitivität der empirischen SGS-Parametrisierung. In dem Projekt sollen zwei eng miteinander verwobene Ansätze verwendet werden, um dieses Thema anzugehen:(1) Neuere Ergebnisse zeigen, dass das Fluktuations-Dissipations-Theorem (FDT) Potential für die Vorhersage der Reaktion einer empirischen SGS-Parametrisierung auf variable externe Bedingungen hat, insbesondere wenn das betroffene System ausreichend viele schnelle Komponenten hat. Die barotrope Vorticitygleichung in dieser Untersuchung gestattet aber nur vergleichsweise langsame barotrope Rossbywellen. Es ist deshalb zu erwarten, dass der FDT-Ansatz in einem realistischeren Zusammenhang noch besser funktioniert. Darum, und auch mit der direkten Absicht, sukzessive den Realismus der Anwendung zu erhöhen, ist es geplant, die FDT-Strategie auf niedrigdimensionale Modelle der quasigeostrophischen Dreischichtendynamik (QG3S) anzuwenden, die synoptisch-skalige barokline Wellen zulässt. Dazu soll eine empirische linear-stochastische (Ornstein-Uhlenbeck, OU) Parametrisierung betrachtet werden.(2) Noch mehr als der obige Ansatz mit einer empirischen OU-Parametrisierung basiert die stochastische Modenreduktion (SMR) auf ersten Prinzipien. Die darin gegebene explizite Ableitung des Einflusses der nichtaufgelösten schnellen Moden, mit multiplikativem Rauschen und nichtlinearen deterministischen Beiträgen als Ergänzung zu Antrieb und additivem Rauschen wie in einer OU-Parametrisierung, sollte zu einem robusteren Verhalten eines entsprechend entwickelten niedrigdimensionalen Modells führen als die mehr datenbasierte OU-Parametrisierung der SGS. Da SMR-basierte Modelle allerdings zu einem Klimafehler neigen, die oben beschriebenen empirischen Ansätze andererseits sehr gut funktionieren, ist es vorgesehen, die Leistungsfähigkeit von SMR-Modellen zu verbessern, indem die konstante und lineare Komponente ihrer SGS-Parametrisierung empirisch ergänzt wird. Wiederum im QG3S-Zusammenhang soll das FDT verwendet werden, um die Reaktion der empirischen Komponenten der so modifizierten SMR-Parametrisierung auf externe Störungen vorherzusagen.Das übergeordnete Ziel dieser Anstrengungen ist ein effizientes Atmosphärenmodell, das soweit wie nach dem heutigen Stand der Wissenschaft möglich auf ersten Prinzipien basiert, das darüber hinaus aber das FDT verwendet, um die Klimaabhängigkeit der verbleibenden empirischen Elemente zu beschreiben.
DFG-Verfahren
Sachbeihilfen
Internationaler Bezug
Russische Föderation
Partnerorganisation
Russian Foundation for Basic Research
Beteiligte Personen
Dr. Stamen Dolaptchiev; Dr. Andrey Gritsun