Detailseite
Entwicklung der Fehlerschätzungsmethode für Datenassimilation für allgemeine Ozean-Zirkulationsmodelle
Antragsteller
Andriy Vlasenko, Ph.D.
Fachliche Zuordnung
Physik, Chemie und Biologie des Meeres
Strömungsmechanik
Strömungsmechanik
Förderung
Förderung von 2014 bis 2018
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 251251156
Die 4D-Var Datenassimilation (4D-var DA) ist eine spezielle Methode, die zur Initialisierung von Klima- und Wettervorsagen durch die Schätzung von Klimamodellparametern benutzt wird, in dem Modelle an beobachtende Daten angepasst werden. Aus verschiedenen Gründen führt DA unvermeidliche methodische Fehler ein, die sich auf die Genauigkeit der Modellvorhersagen auswirken. Aktuelle Methoden zur Fehlerkorrektur brauchen erhebliche Computerressourcen. Dies ist ein Grund, warum die Verwendung dieser Methoden in der Klimamodellierung begrenzt ist und sie nur in vereinfachten Versionen angewandt werden. Die Entwicklung einer konzeptuell neuartigen, robusten und effizienten, nichtlinear-variationellen Fehlerschätzungsmethode (NOVFEM) ist Ziel dieses Projekts. Diese Methode wird Fehler von DA Methoden schätzen und die notwendigen Korrekturen bestimmen. Im Besonderen ist es geplant, VOVFEM im Rahmen einer Anwendung in Klimavorhersagesystemen zu entwickeln. Der Vorteil der vorgeschlagenen Methode ist, dass der Algorithmus auf einer abstrakten mathematischen Formulierung basiert und deshalb in vielen geophysikalischen Bereichen angewandt werden kann. Eine weitere Innovation dieses Projekts ist die Entwicklung einer Methode zur schnellen und einfachen Berechnung von inversen Kovarianzmatrizen, die z. B. Anwendung in DA finden. Die vorgeschlagenen Methode ist im Vergleich mit existieren Methoden effizienter. Es wird erwartet, dass die theoretischen Ergebnisse dieses Projekt national und international veröffentlicht werden und ein freier Zugang zur NOVFEM Software wird bereitgestellt werden.
DFG-Verfahren
Sachbeihilfen