Detailseite
Projekt Druckansicht

Nichtgleichgewichtsdynamik und Einteilchen-Spektralfunktionen in niedrigdimensionalen Fermionensystemen

Antragstellerin Dr. Imke Schneider
Fachliche Zuordnung Theoretische Physik der kondensierten Materie
Förderung Förderung von 2012 bis 2016
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 229060624
 
Dieses Vorhaben hat die Erforschung dynamischer Prozesse in stark korrelierter Quantenmaterie zum Ziel. Dazu werde ich wechselwirkende Elektronen in niedrigdimensionalen Geometrien studieren. Die Eigenschaften dieser Elektronen sollen numerisch und analytisch nach Ort und Zeit aufgelöst betrachtet werden. Die angestrebten Ergebnisse werden neue Erkenntnisse über die Verteilung von Energie und Quanteninformationen in Materie bereitstellen und damit hoch relevant für die Entwicklung zukünftiger Quantenbausteine sein. Niedrigdimensionale Elektronensysteme weisen ungewöhnliche Korrelationseffekte auf. In einer Dimension, beispielsweise, sagt die Luttinger-Flüssigkeitstheorie das bemerkenswerte Phänomen voraus, dass die elementaren niederenergetischen Anregungen separate Spin- und Ladungswellen sind. Die enormen Fortschritte in der experimentellen Realisierung niedrigdimensionaler Systeme der letzten Jahre sind in einigen Fällen Hand in Hand gegangen mit präzisen theoretischen Vorhersagen. Dieses Bild soll hier weiter vervollständigt werden. Gegenwärtig von besonderem Interesse ist die Dynamik stark korrelierter Systeme im Nichtgleichgewicht. In jüngsten Experimenten mit ultrakalten Gasen ist es eindrucksvoll gelungen, ein isoliertes Quantensystem weit weg vom Gleichgewicht zu beobachten. Vollumfassende Vorhersagen für dynamische Vorgänge im Nichtgleichgewicht erfordern jedoch ein Verständnis des gesamten Anregungsspektrums, eine Anforderung, die weit über die derzeitigen Erkenntnisse hinausgeht. Die Erweiterung der Luttinger-Flüssigkeitstheorie um eine mobile Störstelle hat es aber ermöglicht, die Einteilchen-Spektralfunktion auch für höhere Energien zu berechnen. Zusätzlich existieren effiziente numerische Algorithmen, um Zeitabhängigkeiten in einer Dimension zu berechnen. Auf beide Methoden möchte ich zurückgreifen, um fundamentale offene Fragen in Bezug auf eindimensionale Fermionensysteme im Nichtgleichgewicht zu bearbeiten. Wie verhalten sich die Spin- und Ladungsdichten in ultrakalten Fermigasen, wenn ein zusätzliches Teilchen in die Mitte des Systems gebracht wird? Diese Problemstellung soll zusätzlich auf zweidimensionale Systeme erweitert werden. Wie entwickelt sich das System, wenn zu einem Anfangszeitpunkt die Teilchendichte einer Spinrichtung lokal auf Null projiziert wird? Was sind die Eigenschaften der lokalen Einteilchen-Spektralfunktion bei höheren Energien?
DFG-Verfahren Forschungsstipendien
Internationaler Bezug Großbritannien
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung