SPP 1613: Regenerativ erzeugte Brennstoffe durch lichtgetriebene Wasserspaltung: Aufklärung der Elementarprozesse und Umsetzungsperspektiven auf technologische Konzepte
Materialwissenschaft und Werkstofftechnik
Physik
Wärmetechnik/Verfahrenstechnik
Zusammenfassung der Projektergebnisse
The efficient and economic competitive production of fuels e.g. H2 through light driven water splitting is widely considered to be the most favourable future renewable energy technology and is intensively investigated all over the world. Consequently, the proposal for the priority program (SPP) „SolarH2” was accepted by the German Science foundation (DFG) in early 2012 as SPP1613, and the program started at the kick-off meeting in November 2012. The aim of the SPP SolarH2 was to merge distinct research approaches for advanced photoelectrochemical cells involving different disciplines and expertise as e.g. the preparation of photoactive semiconductors and adapted device structures, the synthesis and characterization of electrocatalysts as well as the fundamental analysis of the involved elementary processes and their theoretical simulation. The objective of the SPP was to investigate artificial photosynthesis based on inorganic semiconductors from a fundamental scientific perspective as well as the material science engineering improvements required for its technological implementation. New basic approaches were required that merge scientific innovation with advanced engineering strategies. In the first funding period the priority was on the development and analysis of defined model systems for understanding of those (photo)electrochemical reactions which are involved in H2O splitting at interfaces. Four different but related project areas were defined and studied in close relation to each other to reach the needed and essential synergy effects in the priority program: Photoelectrochemical, Photocatalytic, Electrocatalytic, and Model systems. Based on the obtained results and the approved projects the central research topics were shifted in the second funding period to identify the scientific material preconditions for further investigations of technologically promising systems, which may serve as basis for the subsequent necessary technological developments. Therefore, the SPP was adapted to three complimentary project areas to be studied in close relation to each other to reach the needed and essential synergy effects: Novel photoabsorbers, Advanced electrocatalysts, and Device development. The main results of the PP are i) Multijunction devices are needed as semiconductor absorber layers. Ii) The contact to the electrolyte for hydrogen and oxygen evolution must be engineered with a buried junction and adapted catalysts. Iii) With optimized systems, efficiencies and stability issues can be solved and approach PV-electrolyzer combinations. The basic understanding of the needs and future research goals for realizing an efficient synthetic artificial leaf approach to solar fuel (H2) generation has strongly improved internationally within the last years, most probably also due to the results obtained within the SPP 1613. We are convinced that its funding by the DFG was an important step forward for the reestablishment of the research on artificial fuels in Germany, its international visibility and competitiveness. We do expect a number of further efforts in this decisive research field in the next future.
Projektbezogene Publikationen (Auswahl)
- Anodic Formation of Self-Organized Cobalt Oxide Nanoporous Layers, Angew. Chemie Int. Ed. 52 (2013) 2077–2081
C.-Y. Lee, K. Lee, P. Schmuki
(Siehe online unter https://doi.org/10.1002/anie.201208793) - Efficient and Stable TiO2:Pt-Cu(In,Ga)Se2 Composite Photoelectrodes for Visible –Light Driven Hydrogen Evolution, Advanced Energy Materials 2015, 1402148-1402157
A. Azarpira, M. Lublow, A. Steigert, P. Bogdanoff, D. Greiner, C.A. Kaufmann, M. Krüger, U. Gernert, R. van de Krol, A. Fischer, T. Schedel-Niedrig
(Siehe online unter https://doi.org/10.1002/aenm.201402148) - Enhanced Charge Transport in Tantalum Nitride Nanotube Photoanodes for Solar Water Splitting, ChemSusChem. 8 (2015) 2615–2620
L. Wang, N.T. Nguyen, X. Zhou, I. Hwang, M.S. Killian, P. Schmuki
(Siehe online unter https://doi.org/10.1002/cssc.201500632) - Oxide-Supported IrNiOx Core–Shell Particles as Efficient, Cost-Effective, and Stable Catalysts for Electrochemical Water Splitting, Angew. Chemie, 127, 10, 3018-3022, (2015)
H. Nhan Nong, H.-S. Oh, T. Reier, E. Willinger, M.-G. Willinger, V.Petkov, D. Teschner, P. Strasser
(Siehe online unter https://doi.org/10.1002/anie.201411072) - Approaching Compositional Limits of Perovskite – type Oxides and Oxynitrides by Synthesis of Mg0.25Ca0.65Y0.1Ti(O,N)3, Ca1–xYxZr(O,N)3 (0.1 ≤ x ≤ 0.4), and Sr1– xLaxZr(O,N)3 (0.1 ≤ x ≤ 0.4), Solid State Sci. 2016, 54, 7–16
M. Widenmeyer, C. Peng, A. Baki, R. Niewa, A. Weidenkaff
(Siehe online unter https://doi.org/10.1016/j.solidstatesciences.2015.11.016) - Band engineering for efficient catalyst-substrate coupling for photoelectrochemical water splitting, Phys. Chem. Chem. Phys. 16, 10751 (2016)
J. Klett, J. Ziegler, A. Radetinac, B. Kaiser, R. Schäfer, W. Jaegermann, F. Urbain, J. Becker, V. Smirnov, F. Finger
(Siehe online unter https://doi.org/10.1039/C5CP06230F) - Metal chalcogenide thin film electrode, method for the production thereof and use. 2016/10/20, Patentamt: US, Anmeldenummer: 15101639
Michael Lublow, Anna Fischer, Matthias Driess, Thomas Schedel-Niedrig, Marcel-Philip Luecke
- Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting, EnergyEnviron. Sci. 9 (2016) 145
F. Urbain, V. Smirnov, J.-P. Becker, A. Lambertz, F. Yang, J. Ziegler, B. Kaiser, W. Jaegermann, U. Rau, F. Finger
(Siehe online unter https://doi.org/10.1039/C5EE02393A) - Photoelectrochemical and theoretical investigations of spinel type ferrites (MXFe3-XO4) for water splitting: a mini-review, J. Photon. Energy 2016, 7, 012009
D.H. Taffa, R. Dillert, A.C. Ulpe, K.C.L. Bauerfeind, T. Bredow, D.W. Bahnemann, M. Wark
(Siehe online unter https://doi.org/10.1117/1.JPE.7.012009) - Zinc Ferrite Photoanode Nanomorphologies with Favorable Kinetics for Water-Splitting. Advanced Functional Materials 2016, 26 (25), 4435-4443
A.G. Hufnagel, K. Peters, A. Müller, C. Scheu, D. Fattakhova-Rohlfing, T. Bein
(Siehe online unter https://doi.org/10.1002/adfm.201600461) - (2017) Unraveling Compositional Effects on the Light-Induced Oxygen Evolution in Bi(V-Mo-X)O4 Material Libraries, Energy & Environmental Science, 10, 1213 – 1221
R. Gutkowski, C. Khare, F. Conzuelo, Y.U. Kayran, A. Ludwig, W. Schuhmann
(Siehe online unter https://doi.org/10.1039/C7EE00287D) - Decoupling the effects of high crystallinity and surface area on the photocatalytic overall water splitting over b-Ga2O3 nanoparticles by chemical vapor synthesis, ChemSusChem 2017,10, 4190-4197
S. Lukic, J. Menze, P. Weide, G.W. Busser, M. Winterer, M. Muhler
(Siehe online unter https://doi.org/10.1002/cssc.201701309) - Low-Temperature Atomic Layer Deposition of Cobalt Oxide as an Effective Catalyst for Photoelectrochemical Water-Splitting Devices, Chem. Mater. 2017, 29, 5796
J. Kim, T. Iivonen, J. Hämäläinen, M. Kemell, K. Meinander, K. Mizohata, J. Räisänen, L. Wang, R. Beranek, M. Leskelä, A. Devi
(Siehe online unter https://doi.org/10.1021/acs.chemmater.6b05346) - Rock Salt Ni/Co Oxides with Unusual Nanoscale-Stabilized Composition as Water Splitting Electrocatalysts. Advanced Functional Materials 2017, 27, 1605121
K. Fominykh, G.C. Tok, P. Zeller, H. Hajiyani, T. Miller, M. Döblinger, R. Pentcheva, T. Bein, D. Fattakhova-Rohlfing
(Siehe online unter https://doi.org/10.1002/adfm.201605121) - A Unique Oxygen Ligand Environment Facilitates Water Oxidation in Hole-doped IrNiOx Core-Shell Electrocatalysts, Nature Catalysis, 1, 841-851 (2018)
H. Nhan Nong, T. Reier, H.-S. Oh, M. Gliech, P. Paciok, Thu Ha Thi Vu, D. Teschner, M. Heggen, V. Petkov, R. Schlögl, T. Jones, P. Strasser
(Siehe online unter https://doi.org/10.1038/s41929-018-0153-y) - CVD-grown copper tungstate thin films for solar water splitting, J. Mater. Chem. A 2018, 6, 10206
D. Peeters, O. Mendoza Reyes, L. Mai, A. Sadlo, S. Cwik, D. Rogalla, H.- W. Becker, H.M. Schütz, J. Hirst, S. Müller, D. Friedrich, D. Mitoraj, M. Nagli, M. CasparyToroker, R. Eichberger, R. Beranek, A. Devi
(Siehe online unter https://doi.org/10.1039/C7TA10759E) - High-dimensional wave packet dynamics: photodissociation of water on rutile (110), J. Photochem. And Photobiol. A: Chemistry 366 (2018), 3-11
T. Petersen, J. Mitschker, T. Klüner
(Siehe online unter https://doi.org/10.1016/j.jphotochem.2018.01.037) - Mesoporous ZnFe2O4 photoanodes with template-tailored mesopores and temperature-dependent photocurrents, Chem. Phys. Chem. 19 (2018) 2313-2320
K. Kirchberg, S. Wang, L. Wang, R. Marschall
(Siehe online unter https://doi.org/10.1002/cphc.201800506) - ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications, Nanomaterials (2018) 8, 693
L. Movsesyan, A.W. Maijenburg, N. Goethals, W. Sigle, A. Spende, F. Yang, B. Kaiser, W. Jaegermann, S.-Y. Park, G. Mul, C. Trautmann, M.E. Toimil-Molares
(Siehe online unter https://doi.org/10.3390/nano8090693) - Electronically Coupled Uranium and Iron Oxide Heterojunctions as Efficient Water Oxidation Catalysts, Advanced Functional Materials 2019, 1905005
J. Leduc, Y. Gönüllü, T. Ruoko, T. Fischer, L. Mayrhofer, N.V. Tkachenko, C. Dong, A. Held, M. Moseler, S. Mathur
(Siehe online unter https://doi.org/10.1002/adfm.201905005) - Electronically-Coupled Phase Boundaries in alpha-Fe2O3/Fe3O4 Nanocomposite Photoanodes for Enhanced Water Oxidation, ACS Applied Nano Materials 2019, 2, 334-342
J. Leduc, Y. Gönüllü, P. Ghamgosar, S. You, J. Mouzon, H. Choi, A. Vomiero, M. Grosch, S. Mathur
(Siehe online unter https://doi.org/10.1021/acsanm.8b01936) - Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO 4 and Mo:BiVO 4 Thin Film Photoanodes, ACS Appl. Mater. Interfaces 2019, 11 (18), 16430–16442
M. Rohloff, B. Anke, O. Kasian, S. Zhang, M. Lerch, C. Scheu, A. Fischer
(Siehe online unter https://doi.org/10.1021/acsami.8b16617) - Photoelectrochemistry of Ferrites: Theoretical Predictions vs. Experimental Results. Z. Phys. Chem.
A.C. Ulpe, K.C.L. Bauerfeind, L.I. Granone, A. Arimi, L. Megatif, R. Dillert, S. Warfsmann, D.H. Taffa, M. Wark, D.W. Bahnemann, T. Bredow
(Siehe online unter https://doi.org/10.1515/zpch-2019-1449) - Sol-gel synthesis of mesoporous CaFe2O4 photocathodes with hierarchical pore morphology, Sustainable Energy Fuels 3 (2019) 1150-1153
K. Kirchberg, R. Marschall
(Siehe online unter https://doi.org/10.1039/C8SE00627J) - Stability and Degradation Mechanismof Si-based Photocathodes for Water Splitting with Ultrathin TiO2 Protection Layer, Z. Phys. Chem., 20191481
E. Ronge, T. Cottre, K. Welter, V. Smirnov, N. J. Ottinger, F. Finger, B. Kaiser, W. Jaegermann, and C. Jooss
(Siehe online unter https://doi.org/10.1515/zpch-2019-1481) - Structural Transformation Identification of Sputtered Amorphous MoSx as an Efficient Hydrogen-Evolving Catalyst during Electrochemical Activation, ACS Catalysis 2019, 9, 2368−2380
F. Xi, P. Bogdanoff, K. Harbauer, P. Plate, C. Höhn, J. Rappich, B. Wang, X. Han, R. van de Krol, S. Fiechter
(Siehe online unter https://doi.org/10.1021/acscatal.8b04884) - Tuning the Size and Shape of NanoMOFs via Templated Electrodeposition and Subsequent Electrochemical Oxidation, ACS Appl. Mater. Interfaces (2019) 11, 25378
F. Caddeo, R. Vogt, D. Weil, W. Sigle, M.E. Toimil-Molares, W. Maijenburg
(Siehe online unter https://doi.org/10.1021/acsami.9b04449) - Water-Oxidation Electrocatalysis by Manganese Oxides: Syntheses, Electrode Preparations, Electrolytes and Two Fundamental Questions, 2020
J. Melder, P. Bogdanoff, I. Zaharieva, S. Fiechter, H. Dau, P. Kurz
(Siehe online unter https://doi.org/10.1515/zpch-2019-1491)