Detailseite
Projekt Druckansicht

Geometric representations and symmetries of graphs, maps and other discrete structures and applications in science

Fachliche Zuordnung Theoretische Informatik
Förderung Förderung von 2011 bis 2015
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 195353141
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

The main results of the project are: - Explorations of the connection between the geometric graph models of molecules and polymers and the graphs that represent the relationships among them - A survey of hypergraph products has been published. - Characterization of retracts of Cartesian products of chordal graphs. - Uniqueness of prime factorization of thin hypergraphs w.r.t. strong products has been proved and factorization algorithm is given. - Characterization of recombination on strings as transit function was obtained. - A unified framework for linear and circular multiple sequence alignments was established. - A new formalization of graph editing, relaxed square property and topology of elementary cycles, connective spaces and application is landscape theory were studied. - An explicit construction of a minimum cycle bases for the lexicographic product of graphs. - Application of redundant non-invertible encodings in hard combinatorial optimizaton problems - An efficient heuristic for constructing alternative local multiple sequence alignments from a collection of local pairwise alignments developed, tested.

Projektbezogene Publikationen (Auswahl)

  • Classification of regular maps of Euler characteristic $-3p$.J. Combin. Theory Ser. B 102 (2012), 967-981
    Conder, Marston and Nedela, Roman and Siran, Jozef
    (Siehe online unter https://doi.org/10.1016/j.jctb.2011.11.003)
  • Dendrimers are the unique chemical trees with maximum spectral radius. MATCH 68 (2012), 851-854
    Biyikoglu, Turker and Leydold, Josef
  • On graph identfcaton problems and the special case of identfying vertces using paths. IWOCA 2012: Combinatorial Algorithms, pp. 32-45.
    Foucaud, Florent, Kovse, Matjaz
    (Siehe online unter https://doi.org/10.1007/978-3-642-35926-2_4)
  • The Clique Problem in Ray Intersection Graphs, Algorithms - ESA 2012, Lecture Notes in Computer Science Volume 7501, 2012, pp 241-252
    Sergio Cabello, Jean Cardinal, Stefan Langerman
    (Siehe online unter https://doi.org/10.1007/978-3-642-40450-4_21)
  • Computing the stretch of an embedded graph. SIAM journal on discrete mathematics, ISSN 0895-4801, 2014, vol. 28, no. 3, str. 1391-1401
    Cabello S., Chimani M., Hlineny P.
    (Siehe online unter https://doi.org/10.1137/130945636)
  • Strong products of hypergraphs: Unique prime factorizaton theorems and algorithms. Discrete Applied Mathematics, Vol. 171. 2014, pp. 60-71.
    Hellmuth, Marc, Noll, Manuel, Ostermeier, Lydia
    (Siehe online unter https://doi.org/10.1016/j.dam.2014.02.017)
  • Unique Square Property, Equitable Parttons, and Product-li e Graphs. Discrete Mathematics, Vol. 320. 2014, pp. 92-103.
    Hellmuth, Marc, Ostermeier, Lydia, Stadler, Peter F.
    (Siehe online unter https://doi.org/10.1016/j.disc.2013.12.012)
  • „A note on graphs whose largest eigenvalues of the modularity matrix equals zero", Electronic Journal of Linear Algebra vol 27, 256 (2014)
    S. Majstorovic, D. Stevanovic
    (Siehe online unter https://doi.org/10.13001/1081-3810.1921)
  • Connectvity Spaces. Mathematics in Computer Science, Vol. 9. 2015, pp. 409–436.
    Stadler, Bärbel M. R., Stadler, Peter F.
    (Siehe online unter https://doi.org/10.1007/s11786-015-0241-1)
  • Generalized Topologies: hypergraphs, chemical reactons, and biological evoluton. Advances in Mathematical Chemistry and Applications, Vol. 2. 2015, pp. 300-328.
    Flamm, Christoph, Stadler, Bärbel M. R.
    (Siehe online unter https://dx.doi.org/10.2174/9781681080529115020017)
  • The Grid Property, and Product-li e Hypergraphs. Graphs and Combinatorics, Vol. 31. 2015, pp.757–770.
    Ostermeier, Lydia, Stadler, Peter F.
    (Siehe online unter https://doi.org/10.1007/s00373-013-1392-y)
  • The Relaxed Square Property. Australian Journal of Combinatorics, Vol. 62. 2015, Issue 3, pp. 240–270.
    Hellmuth, Marc, Marc, Tilen, Ostermeier, Lydia, Stadler, Peter F.
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung