Detailseite
Projekt Druckansicht

EXC 1086:  BrainLinks-BrainTools

Fachliche Zuordnung Systemtechnik
Neurowissenschaften
Förderung Förderung von 2012 bis 2019
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 194657344
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

Die Untersuchung der Funktionsweise des Gehirns und der klinischen Behandlungen seiner Krankheiten wie beispielsweise Bewegungsstörungen oder Epilepsie hat substantiell von technischen Systemen für die direkte Interaction mit dem Gehirn profitiert. Es könnte jedoch ein weitaus größeres Spektrum von Patienten von der Lösung grundlegender, medizinischer und technischer Herausforderungen der Neurotechnologie profitieren. Die übergreifende, wissenschaftliche Vision von BrainLinks-BrainTools lag in dem Ziel, bidirektionale Interaktion zwischen dem Gehirn und technischen Systemen auf eine neue Ebene zu heben. Dazu sollten flexible, stabile und adaptive Anwendungen von hybriden Gehirn-Maschine-Schnittstellen entwickelt werden. BrainLinks-Brain-Tools war ein kohärenter Antrag von Forschenden aus den Neuro- und Ingenieurwissenschaften und der Informatik, um die Aktivität des Gehirns für die Kontrolle externer und implantierter Systeme zu nutzen. BrainLinks-BrainTools ist eine strategische Verpflichtung der Universität Freiburg und von Forschenden aus der Medizin, der Biologie, der Mikrosystemtechnik, der Informatik, der Philosopie und der Neurotechnologie mit dem Ziel herausragende Forschung zu leisten und gleichzeitig Early Career Researcher zu fördern, Gender Gleichstellung zu erreichen und ethische Aspekte der Forschung und Technik zu diskutieren. BrainLinks-BrainTools ist Teil einer internationalen Achse von führenden Zentren der Neurotechnologie und einem dichten Netzwerk von industriellen Partnern für die Weiterentwicklung, Verbreitung von Resultaten und die Überführung in Anwendungen bei gleichzeitig kritischer Reflektion der Forschungsergebnisse mit Blick auf deren Akzeptanz in der Gesellschaft. Der Cluster wurde als ein programmatisches Zentrum der Universität installiert, um die Forschung und Lehre zu integrieren und eine kohärente und langfristige Struktur zu etablieren. BrainLinks-BrainTools hat die erforderlichen Strukturen und Professuren innerhalb der Universität erfolgreich aufgebaut und ist vollständig in die Universtiät integiert. Die PIs von BrainLinks-Brain- Tools haben erfolgreich ein Forschungsgebäude einwerben können und erhielten vom Wissenschaftsrat für ihren Vorschlag für das Zentrum für Intelligent Machine Brain Interfacing Technology (IMBIT) die Bewertung des besten Antrags. Das IMBIT wird den mehr als 100 Forschenden von BrainLinks-BrainTools ein herausragendes Umfeld im Kontext der Neurotechnologie bieten. Brain- Links-BrainTools war wissenschaftlich höchst erfolgreich. Es hat mehr als 800 Publikationen generiert, wobei viele davon in den wichtigsten Journalen und Konferenz-Proceedings der entsprechenden Forschungsfelder erschienen sind.

Projektbezogene Publikationen (Auswahl)

  • "Stimulus Selection through Selective Synchronization between Monkey Visual Areas," Neuron, vol. 75, pp. 875-888, 2012
    C. Bosman, J. M. Schoffelen, R. Oostenfeld, T. Womelsdorf, N. Brunet, B. Rubehn, T. Stieglitz, P. Weers and P. Fries
    (Siehe online unter https://doi.org/10.1016/j.neuron.2012.06.037)
  • "A polymer-based microimplant for optogenetic applications: design and first in vivo study," Lab on a Chip, vol. 13, pp. 579-588, 2013
    B. Rubehn, S. B. E. Wolff, P. Tovote, A. Luethi and T. Stieglitz
    (Siehe online unter https://doi.org/10.1039/c2lc40874k)
  • "Neural activity in human hippocampal formation reveals the spatial context of retrieved memories," Science, vol. 342, pp. 1111-1114, 2013
    J. F. Miller, M. Neufang, A. Solway, A. Brandt, M. Trippel, I. Mader, S. Hefft, M. Merkow, S. M. Polyn, J. Jacobs, M. J. Kahana and A. Schulze-Bonhage
    (Siehe online unter https://doi.org/10.1126/science.1244056)
  • "3D Mapping with an RGB-D Camera," IEEE Trans. on Robotics, vol. 30, pp. 177-187, 2014
    F. Endres, J. Hess, J. Sturm, D. Cremers and W. Burgard
    (Siehe online unter https://doi.org/10.1109/TRO.2013.2279412)
  • "Concurrent stable and unstable cortical correlates of human wrist movements," Human Brain Mapping, vol. 35, pp. 3867- 3879, 2014
    M. Witte, F. Galán, S. Waldert, C. Braun and C. Mehring
    (Siehe online unter https://doi.org/10.1002/hbm.22443)
  • "Epilepsy-induced motility of differentiated neurons," Cerebral Cortex, vol. 24, pp. 2130-2140, 2014
    X. Chai, G. Münzner, S. Zhao, S. Tinnes, J. Kowalski, U. Häussler, C. Young, C. A. Haas and M. Frotscher
    (Siehe online unter https://doi.org/10.1093/cercor/bht067)
  • "Fast fMRI provides high statistical power in the analysis of epileptic networks," Neuroimage, vol. 88, pp. 282-294, 2014
    J. Jacobs, J. Stich, B. Zahneisen, J. Assländer, G. Ramantani, A. Schulze-Bonhage, R. Korinthenberg, J. Hennig and P. LeVan
    (Siehe online unter https://doi.org/10.1016/j.neuroimage.2013.10.018)
  • "Joint CP-AMPA and group I mGlu receptor activation is required for synaptic plasticity in dentate gyrus fast-spiking interneurons," P Natl Acad Sci USA, vol. 111, pp. 13211-13216, 2014
    T. Hainmüller, K. Krieglstein, A. Kulik and M. Bartos
    (Siehe online unter https://doi.org/10.1073/pnas.1409394111)
  • "Magnetic properties of materials for MR engineering, micro-MR and beyond," Journal of Magnetic Resonance, vol. 242, pp. 233-242, 2014
    M. C. Wapler, J. Leupold, J. Dragonu, D. M. Zaitsev and U. Wallrabe
    (Siehe online unter https://doi.org/10.1016/j.jmr.2014.02.005)
  • "Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses," Science Translational Medicine, vol. 6, 2014
    Ciancio, C. Cipriani, M. C. Carrozza, W. Jensen, E. Guglielmelli, T. Stieglitz, P. M. Rossini and S. Micera
    (Siehe online unter https://doi.org/10.1126/scitranslmed.3006820)
  • "Robust artifactual independent component classification for BCI practitioners," Journal of Neural Engineering, vol. 11, 2014
    I. Winkler, S. Brandl, F. Horn, E. Waldburger, C. Allefeld and M. Tangermann
    (Siehe online unter https://doi.org/10.1088/1741-2560/11/3/035013)
  • "A detailed insight into drug delivery from PEDOT based on analytical methods: effects and side effects," Biomedical Materials Research Part A,, vol. 103, pp. 1200-1207, 2015
    C. Boehler and M. Asplund
    (Siehe online unter https://doi.org/10.1002/jbm.a.35252)
  • "Astrocyte uncoupling as a cause of human temporal lobe epilepsy," Brain, vol. 138, pp. 1208-1222, 2015
    P. Bedner, A. Dupper, K. Hüttmann, J. Müller, M. K. Herde, P. Dublin, T. Deshpande, J. Schramm, U. Häussler, C. A. Haas, C. Henneberger, M. Theis and C. Steinhäuser
    (Siehe online unter https://doi.org/10.1093/brain/awv067)
  • "Early Seizure Detection Algorithm Based on Intracranial EEG and Random Forest Classification," International Journal of Neural Systems, vol. 25, 2015
    C. Donos, M. Dümpelmann and A. Schulze-Bonhage
    (Siehe online unter https://doi.org/10.1142/S0129065715500239)
  • "Efficient and Robust Automated Machine Learning," Advances in Neural Information Processing Systems 28, 2015. 2962 ff.
    M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum and F. Hutter
  • "Electrical stimulation of the medial forebrain bundle in pre-clinical studies of psychiatric disorders," Neuroscience and Biobehavioral Reviews, vol. 49, pp. 32-42, 2015
    M. D. Döbrössy, L. L. Furlanetti and V. A. Coenen
    (Siehe online unter https://doi.org/10.1016/j.neubiorev.2014.11.018)
  • "Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images," in Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS), 2015
    M. Watter, J. T. Springenberg, J. Boedecker and M. Riedmiller
    (Siehe online unter https://dl.acm.org/doi/10.5555/2969442.2969546)
  • "Fabrication Process for Micro Thermoelectric Generators (μTEGs)," Journal of Electronic Materials, vol. 660, 10 2015
    U. Pelz, J. Jaklin, R. Rostek, F. Thoma, M. Kroener and P. Woias
    (Siehe online unter https://doi.org/10.1007/s11664-015-4088-7)
  • "Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle," P Natl Acad Sci USA, vol. 112, pp. 14694-14699, 2015
    C. Meisel, A. Schulze-Bonhage, D. Freestone, M. J. Cook, P. Achermann and D. Plenz
    (Siehe online unter https://doi.org/10.1073/pnas.1513716112)
  • "Nanostructured platinum grass enables superior impedance reduction for neural microelectrodes," Biomaterials, vol. 67, pp. 346-353, 2015
    C. Boehler, T. Stieglitz and M. Asplund
    (Siehe online unter https://doi.org/10.1016/j.biomaterials.2015.07.036)
  • "New approaches for CMOS-based devices for large-scale neural recording," ScienceDirect, vol. 32, pp. 31-37, 2015
    P. Ruther and O. Paul
    (Siehe online unter https://doi.org/10.1016/j.conb.2014.10.007)
  • "RFID Technology for Continuous Monitoring of Physiological Signals in Small Animals," IEEE Transactions on Biomedical Engineering, vol. 62, pp. 618-626, 2015
    T. Volk, S. Gorbey, M. Bhattacharyya, W. Gruenwald, B. Lemmer, L. M. Reindl, T. Stieglitz and D. Jansen
    (Siehe online unter https://doi.org/10.1109/TBME.2014.2361856)
  • "Strength and duration of perisomatic GABAergic inhibition depend on distance between synaptically connected cells," P Natl Acad Sci USA, vol. 112, pp. 1220-1226, 2015
    M. Strüber, P. Jonas and M. Bartos
    (Siehe online unter https://doi.org/10.1073/pnas.142362811)
  • "Temporal and spatial characteristics of high frequency oscillations as a new biomarker in epilepsy," Epilepsia, vol. 56, pp. 197-206, 2015
    M. Dümpelmann, J. Jacobs and A. Schulze-Bonhage
    (Siehe online unter https://doi.org/10.1111/epi.12844)
  • "Transient Reward Approximation for Continuous-Time Markov Chains," IEEE Transactions on Reliability, vol. 64, 2015
    E. M. Hahn, H. Hermanns, R. Wimmer and B. Becker
    (Siehe online unter https://doi.org/10.1109/TR.2015.2449292)
  • "Autonomous Optimization of Targeted Stimulation of Neuronal Networks," PLoS Computational Biology, vol. 12, 2016
    S. S. Kumar, J. Wülfing, S. Okujeni, J. Boedecker, M. Riedmiller and U. Egert
    (Siehe online unter https://doi.org/10.1371/journal.pcbi.1005054)
  • "Differential Roles of Ventral and Dorsal Streams for Conceptual and Production-Related Components of Tool Use in Acute Stroke Patients," Cerebral Cortex, vol. 26, pp. 3754-3771, 2016
    M. Martin, L. Beume, D. Kümmerer, C. S. Schmidt, T. Bormann, A. Dressing, V. M. Ludwig, R. M. Umarova, I. Mader, M. Rijntjes, C. P. Kaller and C. Weiller
    (Siehe online unter https://doi.org/10.1093/cercor/bhv179)
  • "Efficient Wireless Powering of Biomedical Sensor Systems for Multichannel Brain Implants," IEEE Transactions on Instrumentation and Measurement, vol. 65, pp. 754-764, 2016
    S. Stöcklin, A. Yousaf, T. Volk and L. Reindl
    (Siehe online unter https://doi.org/10.1109/TIM.2015.2482278)
  • "Gamma-Rhythmic Gain Modulation," Neuron, vol. 92, pp. 240-251, 2016
    J. Ni, T. Wunderle, C. M. Lewis, R. Desimone, I. Diester and P. Fries
    (Siehe online unter https://doi.org/10.1016/j.neuron.2016.09.003)
  • "Mesolimbic dopamine signals the value of work," Nature neuroscience, vol. 19, no. 1, pp. 117-26, 2016
    A. A. Hamid, J. R. Pettibone, O. S. Mabrouk, V. L. Hetrick, R. Schmidt, C. M. Van der Weele, R. T. Kennedy, B. J. Aragona and J. D. Berke
    (Siehe online unter https://doi.org/10.1038/nn.4173)
  • "Mossy fiber sprouting and pyramidal cell dispersion in the hippocampal CA2 region in a mouse model of temporal lobe epilepsy," Hippocampus, vol. 26, pp. 577-588, 2016
    U. Häussler, K. Rinas, A. Kilias, U. Egert and C. A. Haas
    (Siehe online unter https://doi.org/10.1002/hipo.22543)
  • "Organizing objects by predicting user preferences through collaborative filtering," The International Journal of Robotics Research, vol. 35, 2016
    N. Abdo, C. Stachniss, L. Spinello and W. Burgard
    (Siehe online unter https://doi.org/10.1177/0278364916649248)
  • "Predictors and signatures of recovery from neglect in acute stroke," Annals of Neurology, vol. 79, pp. 673-686, 2016
    R. M. Umarova, K. Nitschke, C. P. Kaller, S. Kloppel, L. Beume, I. Mader, M. Martin, J. Hennig and C. Weiller
    (Siehe online unter https://doi.org/10.1002/ana.24614)
  • "Predominance of Movement Speed Over Direction in Neuronal Population Signals of Motor Cortex: Intracranial EEG Data and A Simple Explanatory Model," Cerebral Cortex, vol. 26, pp. 2863-2681, 2016
    J. Hammer, T. Pistohl, J. Fischer, P. Krsek, M. Tomasek, P. Marusic, A. Schulze-Bonhage, A. Aertsen and T. Ball
    (Siehe online unter https://doi.org/10.1093/cercor/bhw033)
  • "Quasi-Bessel beams from asymmetric and astigmatic illumination sources," Optics Express, vol. 24, pp. 17433-17452, 2016
    A. Müller, M. C. Wapler, U. T. Schwarz, M. Reisacher, K. Holc, O. Ambacher and U. Wallrabe
    (Siehe online unter https://doi.org/10.1364/OE.24.017433)
  • "Recovery of Dynamics and Function in Spiking Neural Networks with Closed-Loop Control," PLoS Computational Biology, vol. 12, 2016
    I. Vlachos, T. Deniz, A. Aertsen and A. Kumar
    (Siehe online unter https://doi.org/10.1371/journal.pcbi.1004720)
  • "Ultra-fast magnetic resonance encephalography of physiological brain activity-Glymphatic pulsation mechanisms?," Journal of Cerebral Blood Flow & Metabolism, vol. 36, pp. 1033-1045, 2016
    V. Kiviniemi, X. Wang, V. Korhonen, T. Keinänen, T. Tuovinen, J. Autio, P. LeVan, S. Keilholz, Y. Zang, J. Hennig and M. Nedergaard
    (Siehe online unter https://doi.org/10.1177/0271678X15622047)
  • "A Functional Gradient in the Rodent Prefrontal Cortex Supports Behavioral Inhibition," Current Biology, vol. 27, pp. 549-555, 2017
    S. Hardung, R. Epple, Z. Jaeckel, D. Eriksson, C. Uran, V. Senn, L. Gibor, O. Yizhar and I. Diester
    (Siehe online unter https://doi.org/10.1016/j.cub.2016.12.052)
  • "A Meta-analysis on the neural basis of planning: Activation likelihood estimation of functional brain imaging results in the Tower of London task," Human Brain Mapping, vol. 38, pp. 396-413, 2017
    K. Nitschke, L. Kostering, L. Finkel, C. Weiller and C. P. Kaller
    (Siehe online unter https://doi.org/10.1002/hbm.23368)
  • "Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study," Biomaterials, vol. 129, pp. 176-187, 2017
    C. Boehler, C. Kleber, N. Martini, Y. Xie, I. Dryg, T. Stieglitz and M. Asplund
    (Siehe online unter https://doi.org/10.1016/j.biomaterials.2017.03.019)
  • "An Objective Comparison of Cell Tracking Algorithms," in Nature Methods, 2017
    V. Ulman, M. Mavka, K. E. G. Magnusson, O. Ronneberger, C. Haubold, N. Harder, P. Matula, P. Matula, D. Svoboda, M. Radojevic, I. Smal, K. Rohr, J. Jaldén, H. M. Blau, O. Dzyubachyk, B. P. F. Lelieveldt, P. Xiao, Y. Li, S.-Y. Cho, A. C. Dufour, J.-C. Olivo-Marin, C. C. Reyes-Aldasoro, J. A. Solís-Lemus, R. Bensch, T. Brox, J. Stegmaier, R. Mikut, S. Wolf, F. A. Hamprecht, T. Esteves, P. Quelhas, Ö. Demirel, L. Malmström, F. Jug, P. Tomançak, E. H. W. Meijering, A. Muñoz-Barrutia, M. Kozubek and C. O. de-Solórzano
    (Siehe online unter https://doi.org/10.1038/nmeth.4473)
  • "Correlations between Motor Symptoms across Different Motor Tasks, Quantified via Random Forest Feature Classification in Parkinson's Disease," Frontiers in Neurology, vol. 8, p. 607, 2017
    A. Kuhner, T. Schubert, M. Cenciarini, I. K. Wiesmeier, V. A. Coenen, W. Burgard, C. Weiller and C. Maurer
    (Siehe online unter https://doi.org/10.3389/fneur.2017.00607)
  • "Deep learning with convolutional neural networks for EEG decoding and visualization," Human Brain Mapping, vol. 38, pp. 5391-5420, 2017
    R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter, K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard and T. Ball
    (Siehe online unter https://doi.org/10.1002/hbm.23730)
  • "Distance-dependent inhibition facilitates focality of gamma oscillations in the dentate gyrus," Nature Comm, vol. 8, 2017
    M. Strüber, J. F. Sauer, P. Jonas and M. Bartos
    (Siehe online unter https://doi.org/10.1038/s41467-017-00936-3)
  • "Distinct white matter alterations following severe stroke: Longitudinal DTI study in neglect," Neurology, vol. 88, pp. 1546-1555, 2017
    R. M. Umarova, L. Beume, M. Reisert, C. P. Kaller, S. Kloppel, I. Mader, V. Glauche, V. G. Kiselev, M. Catani and C. Weiller
    (Siehe online unter https://doi.org/10.1212/WNL.0000000000003843)
  • "Four ethical priorities for neurotechnologies and AI," Nature News, vol. 551, pp. 159-163, 2017
    R. Yuste, S. Goering, G. B. Blaise Agüera y Arcas, J. M. Carmena, A. Carter, J. J. Fins, P. Friesen, J. Gallant, J. E. Huggins, J. Illes, P. Kellmeyer, E. Klein, A. Marblestone, C. Mitchell, E. Parens, M. Pham, A. Rubel, N. Sadato, L. S. Sullivan, M. Teicher, D. Wasserman, A. Wexler, M. Whittaker and J. Wolpaw
    (Siehe online unter https://doi.org/10.1038/551159a)
  • "Global, Dense Multiscale Reconstruction for a Billion Points," International Journal of Computer Vision, vol. 125, pp. 82-94, 2017
    B. Ummenhofer and T. Brox
    (Siehe online unter https://doi.org/10.1109/ICCV.2015.158)
  • "How to record HFOs in epilepsy: a practical guideline," Epilepsia, vol. 58, pp. 1305-1315, 2017
    M. Zijlmans, G. Worrell, M. Dümpelmann, T. Stiegliz, A. Barborica, M. Heers, A. Ikeda, N. Usui and M. Le Van Quyen
    (Siehe online unter https://doi.org/10.1111/epi.13814)
  • "Improving zero-training brain-computer interfaces by mixing model estimators," Journal of Neural Engineering, vol. 14, 2017
    T. Verhoeven, D. Hübner, M. Tangermann, K.-R. Müller, J. Dambre and P.-J. Kindermans
    (Siehe online unter https://doi.org/10.1088/1741-2552/aa6639)
  • "Learning to Generate Chairs, Tables and Cars with Convolutional Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, pp. 692-705, 2017
    A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko and T. Brox
    (Siehe online unter https://doi.org/10.1109/TPAMI.2016.2567384)
  • "Let There Be Light - Optoprobes for Neural Implants," Proceedings of the IEEE, vol. 105, pp. 101-138, 2017
    M. T. Alt, E. Fiedler, L. Rudmann, J. S. Ordonez, P. Ruther and T. Stieglitz
    (Siehe online unter https://doi.org/10.1109/JPROC.2016.2577518)
  • "Mesoscale architecture shapes initiation and richness of spontaneous network activity," Journal of Neuroscience, vol. 37, pp. 3972-3987, 2017
    S. Okujeni, S. Kandler and U. Egert
    (Siehe online unter https://doi.org/10.1523/JNEUROSCI.2552-16.2017)
  • "Organization of prefrontal network activity by respiration-related oscillations," in Scientific reports, 2017
    J. Biskamp, M. Bartos and J.-F. Sauer
    (Siehe online unter https://doi.org/10.1038/srep45508)
  • "Segmented Bessel Beams," Optics Express, vol. 25, pp. 22640-22646, 2017
    A. Müller, M. C. Wapler and U. Wallrabe
    (Siehe online unter https://doi.org/10.1364/OE.25.022640)
  • "Shakey 2016 - How Much Does it Take to Redo Shakey the Robot?," IEEE Robotics and Automation Letters (RA-L), vol. 2, pp. 1203-1209, 2017
    D. Speck, C. Dornhege and W. Burgard
    (Siehe online unter https://doi.org/10.1109/LRA.2017.2665694)
  • "Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition," eLife, vol. 6, 2017
    M. Yuan, T. Meyer, C. Benkowitz, S. Savanthrapadian, L. Ansel-Bollepalli, A. Foggetti, P. Wulff, P. Alcami, C. Elgueta and M. Bartos
    (Siehe online unter https://doi.org/10.7554/eLife.21105)
  • "Synaptic remodeling of entorhinal input contributes to an aberrant hippocampal network in temporal lobe epilepsy," Cerebral Cortex, vol. 27, pp. 2348-2364, 2017
    P. Janz, S. Savanthrapadian, U. Häussler, A. Kilias, S. Nestel, O. Kretz, M. Kirsch, M. Bartos, U. Egert and C. A. Haas
    (Siehe online unter https://doi.org/10.1093/cercor/bhw093)
  • "Versatile, modular three-dimensional microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates," Journal of Neural Engineering, vol. 14, 2017
    F. Barz, A. Livi, M. Lanzilotto, M. Maranesi, L. Bonini, O. Paul and P. Ruther
    (Siehe online unter https://doi.org/10.1088/1741-2552/aa5a90)
  • eining, U. Häussler, J. G. Korvink, D. Elverfeldt, J. Hennig, U. Egert, P. LeVan and C. A. Haas, "Early tissue damage and microstructural reorganization predict disease severity of experimental epilepsy," Elife, vol. 6, p. e25742, 2017
    P. Janz, N. Schwaderlapp, K. Heining, U. Häussler, J. G. Korvink, D. Elverfeldt, J. Hennig, U. Egert, P. LeVan and C. A. Haas
    (Siehe online unter https://doi.org/10.7554/eLife.25742)
  • "A 22 V Compliant 56 μ W Twin- Track Active Charge Balancing Enabling 100% Charge Compensation Even in Monophasic and 36% Amplitude Correction in Biphasic Neural Stimulators," IEEE Journal of Solid-State Circuits, vol. 53, pp. 2298-2310, 2018
    N. Butz, A. Taschwer, S. Nessler, Y. Manoli and M. Kuhl
    (Siehe online unter https://doi.org/10.1109/JSSC.2018.2828823)
  • "Aspherical high-speed varifocal mirror for miniature catadioptric objectives," Optics Express, vol. 26, pp. 6090-6102, 2018
    M. C. Wapler, F. Lemke, G. Alia and U. Wallrabe
    (Siehe online unter https://doi.org/10.1364/OE.26.006090)
  • "Associative properties of structural plasticity based on firing rate homeostasis in recurrent neuronal networks," Scientific Reports, vol. 8, 2018
    J. V. Gallinaro and S. Rotter
    (Siehe online unter https://doi.org/10.1038/s41598-018-22077-3)
  • "CMOS Neural Probe with 1600 Close-packed Recording Sites and 32 Analog Output Channels," Journal of Microelectromechanical Systems, vol. 27, pp. 1023-1034, 2018
    A. S. Herbawi, O. Christ, L. Kiessner, S. Mottaghi, U. G. Hofmann, O. Paul and P. Ruther
    (Siehe online unter https://doi.org/10.1109/JMEMS.2018.2872619)
  • "Combining biophysical modeling and deep learning for multielectrode array neuron localization and classification," Journal of Neurophysiology, vol. 120 3, pp. 1212-1232, 2018
    A. P. Buccino, M. Kordovan, T. V. Ness, B. Merkt, P. Häfliger, M. Fyhn, G. Cauwenberghs, S. Rotter and G. T. Einevoll
    (Siehe online unter https://doi.org/10.1152/jn.00210.2018)
  • "Early Seizure Detection with an Energy-Efficient Convolutional Neural Network on an Implantable Microcontroller," in International Joint Conference on Neural Networks (IJCNN), 2018
    M. Hügle, S. Heller, M. Watter, M. Blum, F. Manzouri, M. Dümpelmann, A. Schulze- Bonhage, P. Woias and J. Boedecker
    (Siehe online unter https://doi.org/10.1109/IJCNN.2018.8489493)
  • "Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge," Nature Communications, vol. 9, p. 5206, 2018
    A. Shemer, J. Grozovski, T. L. Tay, J. Tao, A. Volaski, P. Süß, A. Ardura-Fabregat, J. S. Gross-Vered, E. David, L. Chappell-Maor, L. Thielecke, C. K. Glass, K. Cornils, M. Prinz and S. Jung
    (Siehe online unter https://doi.org/10.1038/s41467-018-07548-5)
  • "From correlation to causation: Estimating effective connectivity from zero-lag covariances of brain signals," in PLoS Computational Biology, 2018
    J. Schiefer, A. Niederbühl, V. Pernice, C. Lennartz, J. Hennig, P. LeVan and S. Rotter
    (Siehe online unter https://doi.org/10.1371/journal.pcbi.1006056)
  • "Fully Immersible Subcortical Neural Probes With Modular Architecture and a Delta-Sigma ADC Integrated Under Each Electrode for Parallel Readout of 144 Recording Sites," IEEE Journal of Solid-State Circuits, vol. 53, pp. 3111-3125, 2018
    D. D. Dorigo, C. Moranz, H. Graf, M. Marx, D. Wendler, B. Shui, A. S. Herbawi, M. Kuhl, P. Ruther, O. Paul and Y. Manoli
    (Siehe online unter https://doi.org/10.1109/JSSC.2018.2873180)
  • "Incorporation of Silicon Carbide and Diamond‐Like Carbon as Adhesion Promoters Improves In Vitro and In Vivo Stability of Thin-Film Glassy Carbon Electrocorticography Arrays," Adv. Biosys., vol. 2, 2018
    M. Vomero, E. Castagnola, J. S. Ordonez, S. Carli, E. Zucchini, E. Maggiolini, C. Gueli, N. Goshi, F. Ciarpella, C. Cea, L. Fadiga, D. Ricci, S. Kassegne and T. Stieglitz
    (Siehe online unter https://doi.org/10.1002/adbi.201700081)
  • "Parallel emergence of stable and dynamic memory engrams in the hippocampus," Nature, vol. 558, pp. 292-296, 2018
    T. Hainmueller and M. Bartos
    (Siehe online unter https://doi.org/10.1038/s41586-018-0191-2)
  • "Reallife speech production and perception have a shared premotor-cortical substrate," Scientific Reports, vol. 8, 2018
    O. Glanz, J. Derix, R. Kaur, A. Schulze-Bonhage, P. Auer, A. Aertsen and T. Ball
    (Siehe online unter https://doi.org/10.1038/s41598-018-26801-x)
  • "Should patients with brain implants undergo MRI?," Journal of Neural Engineering, vol. 15 4, p. 041002, 2018
    J. B. Erhardt, E. Fuhrer, O. G. Gruschke, J. Leupold, M. C. Wapler, J. Hennig, T. Stieglitz and J. G. Korvink
    (Siehe online unter https://doi.org/10.1088/1741-2552/aab4e4)
  • "Social robots in rehabilitation: A question of trust," Science Robotics, vol. 3, p. eaat1587, 2018
    P. Kellmeyer, O. Mueller, R. Feingold-Polak and S. Levy-Tzedek
    (Siehe online unter https://doi.org/10.1126/scirobotics.aat1587)
  • "Synchrony surfacing: Epicortical recording of correlated action potentials," The European Journal of Neuroscience, vol. 48 12, pp. 3583-3596, 2018
    T. Bockhorst, F. Pieper, G. Engler, T. Stieglitz, E. E. Galindo-Leon and A. K. Engel
    (Siehe online unter https://doi.org/10.1111/ejn.14167)
  • "The dynamics of error processing in the human brain as reflected by highgamma activity in noninvasive and intracranial EEG," Neuroimage, vol. 173, pp. 564-579, 2018
    M. Völker, L. D. J. Fiederer, S. Berberich, J. Hammer, J. Behncke, P. Krsek, M. Tomasek, P. Marusic, P. C. Reinacher, V. A. Coenen, M. Helias, A. Schulze-Bonhage, W. Burgard and T. Ball
    (Siehe online unter https://doi.org/10.1016/j.neuroimage.2018.01.059)
  • "The effects of bilateral, continuous, and chronic Deep Brain Stimulation of the medial forebrain bundle in a rodent model of depression," Experimental Neurology, vol. 303, pp. 153-161, 2018
    S. Thiele, L. Furlanetti, L.-M. Pfeiffer, V. A. Coenen and M. D. Döbrössy
    (Siehe online unter https://doi.org/10.1016/j.expneurol.2018.02.002)
  • "Tractography-assisted deep brain stimulation of the superolateral branch of the medial forebrain bundle (slMFB DBS) in major depression," Neuroimage Clin, vol. 20, pp. 580-593, 2018
    V. A. Coenen, B. Sajonz, M. Reisert, J. Bostroem, B. Bewernick, H. Urbach, C. Jenkner, P. C. Reinacher, T. E. Schlaepfer and B. Mädler
    (Siehe online unter https://doi.org/10.1016/j.nicl.2018.08.020)
  • "What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?," International Journal of Computer Vision, vol. 126, pp. 942-960, 2018
    N. Mayer, E. Ilg, P. Fischer, C. Hazirbas, D. Cremers, A. Dosovitskiy and T. Brox
    (Siehe online unter https://doi.org/10.1007/s11263-018-1082-6)
  • 2] P. Janz, P. Hauser, K. Heining, S. Nestel, M. Kirsch, U. Egert and C. A. Haas, "Positionand Time-Dependent Arc Expression Links Neuronal Activity to Synaptic Plasticity During Epileptogenesis," Frontiers in Cellular Neuroscience, vol. 12, 2018
    P. Janz, P. Hauser, K. Heining, S. Nestel, M. Kirsch, U. Egert and C. A. Haas
    (Siehe online unter https://doi.org/10.3389/fncel.2018.00244)
  • "A quick and accurate method to determine the Poisson's ratio and the coefficient of thermal expansion of PDMS," Soft Matter, vol. 15, pp. 779-784, 2019
    A. Müller, M. C. Wapler and U. Wallrabe
    (Siehe online unter https://doi.org/10.1039/c8sm02105h)
  • "A service assistant combining autonomous robotics, flexible goal formulation, and deep-learning-based brain-computer interfacing," Robotics and Autonomous Systems, vol. 116, pp. 98-113, 2019
    D. Kuhner, L. Fiederer, J. Aldinger, F. Burget, M. Völker, R. Schirrmeister, C. Do, J. Boedecker, B. Nebel, T. Ball and W. Burgard
    (Siehe online unter https://doi.org/10.1016/j.robot.2019.02.015)
  • "Applications of PEDOT in Bioelectronic Medicine," Bioelectronics in Medicine, 2019
    C. Boehler, Z. Aqrawe and M. Asplund
    (Siehe online unter https://doi.org/10.2217/bem-2019-0014)
  • "CMOS-compatible, Flexible, Intracortical Neural Probes," IEEE Transactions on Biomedical Engineering, 2019
    F. Barz., V. Trouillet, O. Paul and P. Ruther
    (Siehe online unter https://doi.org/10.1109/TBME.2019.2936740)
  • "Ethical Tensions in Virtual Reality Treatment in Vulnerable Patients," Nature Medicine, pp. 1185-1188, 2019
    P. Kellmeyer, N. Biller-Andorno and G. Meynen
    (Siehe online unter https://doi.org/10.1038/s41591-019-0543-y)
  • "GluA4-targeted AAV vectors deliver genes selectively to interneurons while relying onthe AAV receptor for entry," Molecular Therapy - Methods and Clinical Development, vol. 14, pp. 252-260, 2019
    J. Hartmann, F. Thalheimer, F. Höpfner, T. Kerzel, K. Khodosevich, D. García-González, H. Monyer, I. Diester, H. Büning, J. E. Carette, P. Fries and C. J. Buchholz
    (Siehe online unter https://doi.org/10.1016/j.omtm.2019.07.004)
  • "Gradient-induced mechanical vibration of neural interfaces during MRI," IEEE Transactions on Biomedical Engineering, 2019
    E. Fuhrer, M. Jouda, C. O. Klein, M. Wilhelm and J. G. Korvink
    (Siehe online unter https://doi.org/10.1109/TBME.2019.2923693)
  • "Hybrid Brain-Computer-Interfacing for Human-Compliant Robots: Inferring Continuous Subjective Ratings with Deep Regression.," Frontiers in Neurorobotics, vol. 13, no. 76, 2019
    L. D. Fiederer, M. Völker, R. T. Schirrmeister, W. Burgard, J. Boedecker and T. Ball
    (Siehe online unter https://doi.org/10.3389/fnbot.2019.00076)
  • "Mining within-trial oscillatory brain dynamics to address the variability of optimized spatial filters," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, pp. 378-388, 2019
    A. Meinel, H. Kolkhorst and M. Tangermann
    (Siehe online unter https://doi.org/10.1109/TNSRE.2019.2894914)
  • "Moral Permissibility of Action Plans," in Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, 2019
    F. Lindner, R. Mattmüller and B. Nebel
    (Siehe online unter https://doi.org/10.1609/aaai.v33i01.33017635)
  • "Network remodeling induced by transcranial brain stimulation: A computational model of tDCS-triggered cell assembly formation," Network Neuroscience, vol. 3, pp. 924-943, 2019
    H. Lu, J. V. Gallinaro and S. Rotter
    (Siehe online unter https://doi.org/10.1162/netn_a_00097)
  • "New life for old wires: Electrochemical sensor method for neural implants," Journal of Neural Engineering, 2019
    A. Weltin, D. Ganatra, K. König, K. Joseph, U. G. Hofmann, G. A. Urban and J. Kieninger
    (Siehe online unter https://doi.org/10.1088/1741-2552/ab4c69)
  • "Non‐invasive assessment of superficial and deep layer circuits in human motor cortex," The Journal of Physiology, vol. 597, 5 2019
    A. Kurz, W. Xu, P. Wiegel, C. Leukel and S. Baker
    (Siehe online unter https://doi.org/10.1113/JP277849)
  • "Propagation of orientation selectivity in a spiking network model of layered primary visual cortex," PLOS Computational Biology, vol. 15, p. e1007080, 2019
    B. Merkt, F. Schüßler and S. Rotter
    (Siehe online unter https://doi.org/10.1371/journal.pcbi.1007080)
  • "Self-Supervised Model Adaptation for Multimodal Semantic Segmentation," International Journal of Computer Vision, 2019
    A. Valada, R. Mohan and W. Burgard
    (Siehe online unter https://doi.org/10.1007/s11263-019-01188-y)
  • "Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain," Nature Medicine, vol. 25, pp. 1356-1363, 2019
    F. P. Petrini, M. Bumbasirevic, G. Valle, V. Ilic, P. Mijovic, P. Cvancara, F. Barberi, D. Bortolotti, D. Andreu, J.-L. Divoux, K. Lechler, A. Lesic, S. Mazic, B. Mijovic, D. Guiraud, T. Stieglitz, A. Asgeir, S. Micera and S. Raspopovic
    (Siehe online unter https://doi.org/10.1038/s41591-019-0567-3)
  • "Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation," Science, vol. 363, 2019
    M. J. C. Jordao, R. Sankowski, S. M. Brendecke, Sagar, G. Locatelli, Y. H. Tai, T. L. Tay, E. Schramm, S. Armbruster, N. Hagemeyer, O. Gross, D. Mai, O. Cicek, T. Falk, M. Kerschensteiner, D. Grun and M. Prinz
    (Siehe online unter https://doi.org/10.1126/science.aat7554)
  • "U-Net: deep learning for cell counting, detection and morphometrie," Nature Methods, vol. 16, pp. 67-70, 2019
    T. Falk, D. Mai, R. Bensch, Ö. Cicek, A. Abdulkadir, Y. Marrakchi, A. Böhm, J. Deubner, Z. Jäckel, K. Seiwald, A. Dovzhenko, O. Tietz, C. D. Bosco, S. Walsh, D. Saltukoglu, T. L. Tay, M. Prinz, K. Palme, M. Simons, I. Diester, T. Brox and O. Ronneberger
    (Siehe online unter https://doi.org/10.1038/s41592-018-0261-2)
  • "VR-Goggles for Robots: Real-to-Sim Domain Adaptation for Visual Control," IEEE Robotics and Automation Letters (RA-L), vol. 4, pp. 1148-1155, 2019
    J. Zhang, L. Tai, Y. Peng, Y. Xiong, M. Liu, J. Boedecker and W. Burgard
    (Siehe online unter https://doi.org/10.1109/LRA.2019.2894216)
  • "Wafer-scale fabrication of conducting polymer hydrogels for microelectrodes and flexible bioelectronics," Advanced Biosystems, vol. 3, 2019
    C. Kleber, K. Lienkamp, J. Rühe and M. Asplund
    (Siehe online unter https://doi.org/10.1002/adbi.201900072)
  • Automated Machine Learning - Methods, Systems, Challenges, Springer, 2019
    F. Hutter, L. Kotthoff and J. Vanschoren (eds.)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung