Project Details
Projekt Print View

Relaxation theorems and necessary optimality conditions for semiconvex multidimensional control problems

Subject Area Mathematics
Term from 2010 to 2014
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 169104499
 
Final Report Year 2014

Final Report Abstract

No abstract available

Publications

  • A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control and Optimization 2 (2012), 487 – 510
    Wagner, M.
  • Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions. ESAIM: Mathematical Modelling and Numerical Analysis 47 (2013), 1077 – 1106
    Kunisch, K.; Wagner, M.
    (See online at https://doi.org/10.1051/m2an/2012058)
  • A note on gradient Young measure relaxation of Dieudonné-Rashevsky type control problems with integrands f (s, ξ, v). J. Convex Anal. 21 (2014), 453 – 476
    Wagner, M.
  • Multimodal image registration by elastic matching of edge sketches via optimal control. J. Ind. Manag. Optim. 10 (2014), 567 – 590
    Angelov, A.; Wagner, M.
    (See online at https://doi.org/10.3934/jimo.2014.10.567)
  • Pontryagin’s principle for Dieudonné-Rashevsky type problems with polyconvex data. Universität Leipzig, Preprint-Peihe des Mathematischen Instituts, Preprint Nr. 01/2014
    Wagner, M.
  • Sobolev regularity of multipliers in multidimensional control problems of Dieudonné-Rashevsky type. Universität Leipzig, Preprint-Peihe des Mathematischen Instituts, Preprint Nr. 02/2014
    Wagner, M.
 
 

Additional Information

Textvergrößerung und Kontrastanpassung