Project Details
Relaxation theorems and necessary optimality conditions for semiconvex multidimensional control problems
Applicant
Privatdozent Dr. Marcus Wagner
Subject Area
Mathematics
Term
from 2010 to 2014
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 169104499
Final Report Year
2014
Final Report Abstract
No abstract available
Publications
- A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control and Optimization 2 (2012), 487 – 510
Wagner, M.
- Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions. ESAIM: Mathematical Modelling and Numerical Analysis 47 (2013), 1077 – 1106
Kunisch, K.; Wagner, M.
(See online at https://doi.org/10.1051/m2an/2012058) - A note on gradient Young measure relaxation of Dieudonné-Rashevsky type control problems with integrands f (s, ξ, v). J. Convex Anal. 21 (2014), 453 – 476
Wagner, M.
- Multimodal image registration by elastic matching of edge sketches via optimal control. J. Ind. Manag. Optim. 10 (2014), 567 – 590
Angelov, A.; Wagner, M.
(See online at https://doi.org/10.3934/jimo.2014.10.567) - Pontryagin’s principle for Dieudonné-Rashevsky type problems with polyconvex data. Universität Leipzig, Preprint-Peihe des Mathematischen Instituts, Preprint Nr. 01/2014
Wagner, M.
- Sobolev regularity of multipliers in multidimensional control problems of Dieudonné-Rashevsky type. Universität Leipzig, Preprint-Peihe des Mathematischen Instituts, Preprint Nr. 02/2014
Wagner, M.