Detailseite
Projekt Druckansicht

Statistische Analyse phonetischer, linguistischer und rhythmischer Merkmale des Sprachsignals von normaler und alkoholisierter Sprache

Fachliche Zuordnung Allgemeine und Vergleichende Sprachwissenschaft, Experimentelle Linguistik, Typologie, Außereuropäische Sprachen
Förderung Förderung von 2009 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 156714053
 
Erstellungsjahr 2015

Zusammenfassung der Projektergebnisse

In diesem Projekt wurden phonetische, linguistische und rhythmische Merkmale von Sprache unter Alkoholeinfluss im Vergleich zu Sprache nüchterner Sprecher untersucht. Datenbasis ist das bislang größte veröffentlichte Korpus mit alkoholisierter Sprache 'Alcohol Language Corpus' (ALC) mit 162 Sprechern; dieses Korpus wurde auch als Testmaterial für die 'Interspeech 2011 Speaker State Challenge' eingesetzt. Die Ergebnisse dieses Projektes sind relevant für forensische Untersuchungen (z.B. zur Beurteilung der Nüchternheit von Verdächtigen zur Tatzeit) sowie auch für die Entwicklung von automatischen Monitoring-Programmen für Fahrzeugführer. Neu an der vorliegenden Studie ist die große Anzahl von Sprechern (auch weiblichen) in der Datenbasis (welche erstmals gesicherte statistische Aussagen zulassen), die Belegung der Alkoholisierung der Versuchspersonen durch die Untersuchung der Blutalkoholkonzentration (bisher meistens nur Atemalkohol), die Untersuchung von verschiedenen Sprachstilen (bisher nur gelesene Sprache), die Untersuchung von Rhythmus-Parametern einschließlich der Energie- und Grundfrequenz-Konturen, die Durchführung von Perzeptionsexperimenten zur Diskriminationsfähigkeit von alkoholisierter und nüchterner Sprache, sowie von Perzeptionsexperimenten mit manipulierten Sprachstimuli, um Alkoholisierung zu kompensieren/simulieren. Die wichtigsten Ergebnisse der vorliegenden Studie sind: 1) Die Mehrzahl von phonetischen und linguistischen Langzeit-Merkmalen unterscheiden sich im Mittel in alkoholisierter und nüchterner Sprache, darunter die Tonlage, die Geschwindigkeit, die Artikulationsgenauigkeit, der Rhythmus, die Anzahl der Versprecher und Korrekturen; 2) Energie- und Grundfrequenzkonturen unterscheiden sich ebenfalls signifikant (traditionelle Abstandsmaße, Parameterisierung von Konturen), jedoch bringt eine Funktionale Datenanalyse (FDA) keinen Vorteil gegenüber traditionellen Methoden; 3) Sibilanten ('s' und 'sch') werden nicht zentralisierter artikuliert, sondern im Gegenteil prägnanter; dies ist vermutlich ein kompensatorischer Effekt, der seine Ursache darin hat, dass sich die Versuchspersonen beobachtet fühlten; das gleiche wird für die Vokalartikulation beobachtet, bei der Vokale nicht zentralisierter artikuliert werden, sondern distinktiver; 4) Sprechgeschwindigkeit nimmt generell ab bei Alkoholisierung, desgleichen nimmt die Anzahl der Pausen zu, aber nicht deren Länge; 5) Alle gefundenen Merkmals-Unterschiede sind stark ideosynkratisch: Sprecher variieren in ihrem Verhalten sehr weit, sind aber in sich relativ konsistent; ein Zusammenhang mit dem Geschlecht besteht in der Regel nicht (Ausnahme: Artikulation von Vokalen: weibliche Sprecher kompensieren mehr als männliche); 6) Modernste Verfahren der Mustererkennung erreichen ca. 78% Diskriminationsgenauigkeit nur anhand von Sprache; menschliche Hörer erreichen dagegen nur ca. 63%. 7) Obwohl die (messbare) Tonlage ein sehr robustes Merkmal für Alkoholisierung darstellt, verwenden menschliche Hörer dieses Merkmal nicht oder nur, wenn andere Merkmale nicht zur Verfügung stehen (z.B. Versprecher); ein Grund hierfür ist vermutlich, dass die Tonlage von sehr vielen anderen Sprecherzuständen (z.B. Müdigkeit, emotionale Stimmung) abhängt, und daher von Hörern als nicht sehr zuverlässig eingeschätzt wird.

Projektbezogene Publikationen (Auswahl)

  • (2009): Laying the Foundation for In-car Alcohol Detection by Speech. Proc. of the Interspeech 2009, Brighton, UK, pp. 983-986
    Schiel F, Heinrich Chr
  • (2010): Rhythm and Formant Features for Automatic Alcohol Detection. Proc. of the Interspeech 2010, Chiba, Japan, pp. 458-461
    Schiel F, Heinrich Chr, Neumeyer V
  • (2011): Perception of Alcoholic Intoxication in Speech. In: Proc. of the Interspeech 2011, Florence, Italy, pp. 3281-3284
    Schiel F
  • (2012): The influence of alcoholic intoxication on the fundamental frequency of female and male speakers. J. Acoust. Soc. Am. Volume 132, Issue 1, pp. 442-451
    Baumeister B, Heinrich Chr, Schiel F
    (Siehe online unter https://doi.org/10.1121/1.4726017)
  • Alcohol Language Corpus. In: Language Resources and Evaluation, Volume 46, Issue 3 (2012), pp. 503-521
    Schiel F, Heinrich Chr, Barfüßer S
    (Siehe online unter https://doi.org/10.1007/s10579-011-9139-y)
  • (2013): Human Perception of Alcoholic Intoxication in Speech. In: Proc. of the Interspeech 2013, Lyon, France, 1419-1423
    Baumeister B, Schiel F
  • (2014): German Alcohol Language Corpus - the Question of Dialect. In: Proceedings of the Nineth International Conference on Language Resources and Evaluation (LREC'14), Editors: N. Calzolari et al., European Language Resources Association (ELRA):Paris, France, isbn: 978-2-9517408-8-4, pp. 353-356
    Schiel F, Kisler Th
  • (2014): Medium-term speaker states—A review on intoxication, sleepiness and the first challenge. In: Computer, Speech and Language, Vol. 28, Issue 2, March 2014, pp. 346-374
    Schuller B, Steidl S, Batliner A, Schiel F, Krajevski J, Weninger F, Eyben F
    (Siehe online unter https://dx.doi.org/10.1016/j.csl.2012.12.00)
  • (2014): The influence of alcoholic intoxication on the short-time energy function of speech. J. Acoust. Soc. Am. Volume 135, Issue 5, pp. 2942-2951
    Heinrich Chr, Schiel F
    (Siehe online unter https://doi.org/10.1121/1.4870705)
  • (2015): Disfluencies in the speech of intoxicated speakers. International Journal of Speech, Language and the Law, Volume 22.1, pp. 19-33
    Schiel F, Heinrich Chr
    (Siehe online unter https://dx.doi.org/10.1558/ijsll.v22i1.24767)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung