Isotrope Besovräume sind heutzutage ein wohlakzeptiertes Hilfsmittel in der numerischen Analysis und Approximationstheorie. Tensorprodukte solcher Funktionenräume sind bisher kaum untersucht, treten aber zunehmend bei der Behandlung mehrdimensionaler (hochdimensionaler) Probleme auf. Die Tensorprodukträume sind wesentlich kleiner als die entsprechenden isotropen Räume. Kann man also nachweisen, daß die zu approximierende Funktion nicht nur im isotropen Besovraum, sondern im Tensorprodukt-Besovraum liegt, dann kann man ein besseres Approximationsverhalten erwarten. In diesem Projekt wurde das Verhalten der Weiten der besten m-Term Approximation (einer speziellen Form der nichtlinearen Approximation) bezüglich der Einbettungen untersucht. Die asymptotisch exakten Raten, teilweise unter Zusatzbedingungen, wurden bestimmt.