Detailseite
Projekt Druckansicht

Modelle für höhere Kategorien

Antragstellerin Dr. Viktoriya Ozornova
Fachliche Zuordnung Mathematik
Förderung Förderung in 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 442418934
 
Erstellungsjahr 2020

Zusammenfassung der Projektergebnisse

Das Ziel dieses Projektes war der Vergleich der Modelle für höhere Kategorientheorie. Die Kategorientheorie ist ein Werkzeug innerhalb der Mathematik, um Ordnung in mathematische Objekte zu bringen. Allerdings hat es sich herausgestellt, dass der Rahmen einer Kategorie zu starr ist für diverse Beispiele aus der Topologie, Algebra und Geometrie. Das Aufweichen des Begriffs einer Kategorie führt zum Begriff einer Unendlich-Kategorie. Letzterer ist jedoch zunächst kein präziser mathematischer Begriff, sondern eine Idee, die auf viele verschiedene Arten und Weisen realisiert werden kann - wir sprechen von Modellen von Unendlich-Kategorien. Resultate u.a. von Bergner, Joyal-Tierney, Lurie zeigen, dass alle diese Modelle in einem präzisen Sinne äquivalent sind, und das Verstehen dieser Äquivalenzen erlaubt es, Aussagen aus einem Modell in ein anderes zu übertragen. Während Unendlich-Kategorien sehr flexibel sind, erfassen sie nur einen Teil der Phänomene aus der Kategorientheorie, gewissermaßen fehlen an dieser Stelle natürliche Transformationen. Um das wiederum zu beheben, gibt es reichhaltigere Strukturen, die selbst verschiedene Modelle zulassen. In diesem Fall ist jedoch Äquivalenz von manchen Modellen weiterhin offen, und das Verstehen der Äquivalenzen häufig noch unvollständig. In diesem Projekt geben wir eine direkte Äquivalenz zwischen zwei Modellen an, nämlich zwischen Theta-2-Räumen und saturierten 2-komplizialen Mengen. Das Resultat vereinfacht die bisher nur implizit bekannte Verbindung zwischen den beiden; das erlaubt sowohl, leichter die Aussagen zwischen diesen Modellen zu transportieren als auch, Verallgemeinerungen für höhere Versionen dieser Modelle vorzunehmen.

Projektbezogene Publikationen (Auswahl)

  • Fundamental pushouts of ncomplicial sets
    Viktoriya Ozornova and Martina Rovelli
  • “The Duskin nerve of 2-categories in Joyal’s cell category Θ2 ”. In: J. Pure Appl. Algebra 225.1 (2021), pp. 106462, 17
    Viktoriya Ozornova and Martina Rovelli
    (Siehe online unter https://doi.org/10.1016/j.jpaa.2020.106462)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung