Project Details
Projekt Print View

SFB 787:  Semiconductor Nanophotonics: Materials, Models, Devices

Subject Area Physics
Computer Science, Systems and Electrical Engineering
Mathematics
Term from 2008 to 2019
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 43659573
 
Final Report Year 2020

Final Report Abstract

The Collaborative Research Center "Semiconductor Nanophotonics" (CRC 787) brought together three complementary research areas - Materials, Models, and Devices - aiming at the development of novel nanophotonic structures and devices. Based on the two most relevant families of semiconducting materials for optoelectronics (group III-arsenides and III-nitrides) significant advances in the growth and advanced characterization of semiconductor nanostructures have been made. This includes the realization of single site-controlled InGaAs quantum dots employing a novel buried stressor approach, paving the way for the demonstration of electrically operated and deterministic single photon sources with emission linewidth ≤ 25 µeV. Another highlight was the growth of stacked InAs submonolayer quantum dots and the determination of their atomic structure and optical properties. After integration of these stacked submonolayer quantum dots in optical amplifiers CRC 787 researchers were able to observe quantum-coherence effects at roomtemperature in ultrafast laser pulses. Furthermore, a new type of confined biexciton state was discovered in GaN quantum dots with spin configuration of s=+/-3, enabling new transition schemes for the biexcitonexciton decay, which is very promising for next generation quantum emitters. The CRC researchers were also able to reveal the atomic structure of non-polar group-III nitride semiconductor surfaces employing high resolution scanning tunneling microscopy techniques. The CRC has also made significant advances in theoretical and numerical modelling ranging from the description of fundamental optics, electronics, and vibronic properties of nanomaterials to the simulation of complex nanophotonic devices. This included a fundamental understanding of interactions like electron-lattice and light-matter interactions, electron-photon correlations, and Coulomb interaction on nanometer-scales which are essential for the next quantum revolution. For this purpose theoretical methods were developed to describe many particle dynamics, optical properties and spectroscopic results of semiconductor nanostructures. This enabled the device-scale simulation of electrically driven quantum light emitters such as single-photon sources based on semiconductor quantum dots by combining a hybrid quantum-classical model with cavity quantum electrodynamics. It also allowed the exploration of dephasing in solid-state quantum emitters via time-and temperature-dependent Hong-Ou-Mandel experiments. Furthermore, a theoretical framework to model the ultra-fast carrier dynamics in nano-structured gain media was developed in order to predict the complex light output dynamics ranging from short pulses to chaotic emission. Based on these fundamental breakthroughs and comprehensive understanding of the underlying physics a number of new nanophotonic devices have been realized with applications in quantum communication systems, data transfer, and I/O engines. The CRC researchers have realized ultra-high speed and energy efficient vertical cavity surface emitting lasers (VCSELs) and VCSEL arrays with record optical output power levels, modulation bandwidth, and digital data transmission rates. This includes the demonstration of the world’s most energy efficient VCSELs with with energy-to-data rates of 80 fJ/bit at bit rates of 40 Gb/s. These nanometer-scale lasers will be critical components for next generation information and communications technology (ICT) including Fifth Generation (5G) networks, and Internet of Things (IoT) systems. In addition, we were able to realize a silicon photonic I/O engine based on hybrid integration of VCSELs with silicon photonics for highly efficient chip-to-chip communication. We were also able to demonstrate electrically driven quantum key systems based on q-bit and entangled photon emitters operating at high q-bit rates and implement them in real information networks. Highlights include the development of in-situ e-beam lithography (EBL) and the deterministic integration of single InGaAs quantum dots into on-chip multimode interference beamsplitters using in-situ electron beam lithography as well as the realization of bright triggered twin-photon solid state sources. The demonstration of a stand-alone fiber-coupled single-photon source and the generation of on-demand frequency-locked indistinguishable photons as well as time-bin entangled photon pairs enabled CRC researchers to demonstrate a free-space optical link and the transmission of quantum information via single and entangled photons. CRC researchers were also able to push the wavelength limits of semiconductor emitters and demonstrate a new world record for the shortest wavelength AlGaN lasers emitting in the deep ultraviolet (UV) at 237 nm. Significant advances have also been made towards current-injection UV laser diodes with the first demonstration of MOVPE-grown AlGaN-based tunnel heterojunctions enabling fully transparent deep UV light emitting diodes. This breakthrough will be critical for UV laser diodes for applications in medical diagnostics, sensing, and 3D-printing. Finally, great strides have also been made in the development of high power and high brightness infrared (IR) laser diodes for applications in materials processing, optical clocks, and life sciences. This includes new concepts for high-power GaAs-based edge-emitting laser diodes with super large optical cavities (SLOC) that utilize photonic bandgap crystal (PBC) waveguides. Theselaser diodes exhibited extremely small divergence angles and an excellent beam quality.

Publications

  • Few-particle energies versus geometry and composition of InxGa1-xAs/GaAs self-organized quantum dots, Phys. Rev. B Vol. 79(7), 075443 (2009)
    Schliwa, A., Winkelnkemper, M. and Bimberg, D.
    (See online at https://doi.org/10.1103/PhysRevB.79.075443)
  • Few-photon model of the optical emission of semiconductor quantum dots, Phys. Rev. Lett.Vol. 103(8), 087407 (2009)
    Richter, M., Carmele, A., Sitek, A. and Knorr, A.
    (See online at https://doi.org/10.1103/PhysRevLett.103.087407)
  • Generation von verschränkten Photonenpaaren mittels Quantenpunkten, die auf einem (111)-Zinkblende-Substrat gewachsen wurden, German Patent Office 10 2008 036 400.2, (Publication date: 2010/01/21)
    A. Schliwa, M. Winkelnkemper, D. Bimberg
  • 81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects, Appl. Phys. Lett. Vol. 98(23), 231106 (2011)
    Moser, P., Hofmann, W., Wolf, P., Lott, J.A., Larisch, G., Payusov, A., Ledentsov, N.N. and Bimberg, D.
    (See online at https://doi.org/10.1063/1.3597799)
  • A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems, NonlinearityVol. 24(4), 1329 (2011)
    Mielke, A.
    (See online at https://doi.org/10.1088/0951-7715/24/4/016)
  • Atomic structure and optical properties of InAs submonolayer depositions in GaAs, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. Vol. 29(4), 04D104 (2011)
    Lenz, A., Eisele, H., Becker, J., Schulze, J.-H., Germann, T.D., Luckert, F., Pötschke, K., Lenz, E., Ivanova, L., Strittmatter, A., Bimberg, D., Pohl, U.W. and Dähne, M.
    (See online at https://doi.org/10.1116/1.3602470)
  • Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers, Phys. Rev. B Vol. 84(3), 035313 (2011)
    Wagner, M.R., Callsen, G., Reparaz, J.S., Schulze, J.-H., Kirste, R., Cobet, M., Ostapenko, I.A., Rodt, S., Nenstiel, C., Kaiser, M., Hoffmann, A., Rodina, A.V., Phillips, M.R., Lautenschläger, S., Eisermann, S. and Meyer, B.K.
    (See online at https://doi.org/10.1103/PhysRevB.84.035313)
  • Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical feedback, New J. Phys. Vol. 14 113033 (2012)
    Otto, C., Lüdge, K., Vladimirov, A.G., Wolfrum, M. and Schöll, E.
    (See online at https://doi.org/10.1088/1367-2630/14/11/113033)
  • Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells, Semicond. Sci. Technol. Vol. 27(2), 024014 (2012)
    Wernicke, T., Schade, L., Netzel, C., Rass, J., Hoffmann, V., Ploch, S., Knauer, A., Weyers, M., Schwarz, U. and Kneissl, M.
    (See online at https://doi.org/10.1088/0268-1242/27/2/024014)
  • Non-polar group-III nitride semiconductor surfaces, Phys. Status Solidi - Rapid Res. Lett. Vol. 6(9-10), 359-369 (2012)
    Eisele, H. and Ebert, P.
    (See online at https://doi.org/10.1002/pssr.201206309)
  • Single-photon source, US Patent 8149888 B1 (Publication date: 2012/04/03)
    A. Schliwa, E.Stock, D.Bimberg
  • Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature, Nat. Commun. Vol. 4(1), 2953 (2013)
    Kolarczik, M., Owschimikow, N., Korn, J., Lingnau, B., Kaptan, Y., Bimberg, D., Schöll, E., Lüdge, K. and Woggon, U.
    (See online at https://doi.org/10.1038/ncomms3953)
  • Effect of dynamical instability on timing jitter in passively mode-locked quantum-dot lasers, Opt. Lett. Vol. 39(24), 6815 (2014)
    Pimenov, A., Habruseva, T., Rachinskii, D., Hegarty, S.P., Huyet, G. and Vladimirov, A.G.
    (See online at https://doi.org/10.1364/ol.39.006815)
  • Impact of electron irradiation on electron holographic potentiometry, Appl. Phys. Lett. Vol. 105(9), 094102 (2014)
    Park, J.B., Niermann, T., Berger, D., Knauer, A., Koslow, I., Weyers, M., Kneissl, M. and Lehmann, M.
    (See online at https://doi.org/10.1063/1.4894718)
  • Manifestation of unconventional biexciton states in quantum dots., Nat Commun 5, 5721 (2014)
    Hönig, G., Callsen, G., Schliwa, A., Kalinowski, S., Kindel, C., Kako, S., Arakawa,Y., Bimberg, D., Hoffmann, A.
    (See online at https://doi.org/10.1038/ncomms6721)
  • Performance characteristics of UV-C AlGaN-based lasers grown on sapphire and bulk AlN substrates, IEEE Photonics Technol. Lett. Vol. 26(4), 342-345 (2014)
    Martens, M., Mehnke, F., Kuhn, C., Reich, C., Kueller, V., Knauer, A., Netzel, C., Hartmann, C., Wollweber, J., Rass, J., Wernicke, T., Bickermann, M., Weyers, M. and Kneissl, M.
    (See online at https://doi.org/10.1109/LPT.2013.2293611)
  • Pump-probe quantum state tomography in a semiconductor optical amplifier, Opt. Express Vol. 22(26), 32520 (2014)
    Grosse, N.B., Owschimikow, N., Aust, R., Lingnau, B., Koltchanov, A., Kolarczik, M., Lüdge, K. and Woggon, U.
    (See online at https://doi.org/10.1364/oe.22.032520)
  • Bauelement mit einer transparenten leitfähigen Nitridschicht, Patent DE 10 2015 108 875.4 (Publication date: 2015/06/04)
    A. Hoffmann, C. Nenstiel, A. Dadgar, and A. Strittmatter
  • Direct evidence of single quantum dot emission from GaN islands formed at threading dislocations using nanoscale cathodoluminescence: A source of single photons in the ultraviolet, Applied Physics Letters 106, 252101 (2015)
    Schmidt, G., Berger, C., Veit, P., Metzner, S., Bertram, F., Bläsing, J., Dadgar, A., Strittmatter, A., Christen, J., Callsen, G., Kalinowski, S., Hoffmann, A.
    (See online at https://doi.org/10.1063/1.4922919)
  • Gruppe-III-Nitrid-basierte Schichtenfolge, deren Verwendung und Verfahren ihrer Herstellung, Patent DE 10 2011 108 080 B4 (Publication date: 2015/08/20)
    A. Dadgar and A. Krost
  • Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography, Nat. Commun. Vol. 6(1), 7662 (2015)
    Gschrey, M., Thoma, A., Schnauber, P., Seifried, M., Schmidt, R., Wohlfeil, B., Krüger, L., Schulze, J.H., Heindel, T., Burger, S., Schmidt, F., Strittmatter, A., Rodt, S. and Reitzenstein, S.
    (See online at https://doi.org/10.1038/ncomms8662)
  • Layer Assembly, US. Patent 8,349,712 B2 (Publication date: 2012/12/11)
    A. Strittmatter, A. Schliwa, T. D. Germann, U. W. Pohl, V. Gaysler, J.-H. Schulze
  • On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement, Opt. Quantum Electron. Vol. 47(6), 1327-1332 (2015)
    Koprucki, T., Rotundo, N., Farrell, P., Doan, D.H. and Fuhrmann, J.
    (See online at https://doi.org/10.1007/s11082-014-0050-9)
  • Strain field of a buried oxide aperture, Phys. Rev. B Vol. 91(7), 075306 (2015)
    Kießling, F., Niermann, T., Lehmann, M., Schulze, J.-H., Strittmatter, A., Schliwa, A. and Pohl, U.W.
    (See online at https://doi.org/10.1103/PhysRevB.91.075306)
  • Strong charge-carrier localization in InAs/GaAs submonolayer stacks prepared by Sb-assisted metalorganic vapor-phase epitaxy, Phys. Rev. B Vol. 91(23), 235418 (2015)
    Quandt, D., Schulze, J.H., Schliwa, A., Diemer, Z., Prohl, C., Lenz, A., Eisele, H., Strittmatter, A., Pohl, U.W., Gschrey, M., Rodt, S., Reitzenstein, S., Bimberg, D., Lehmann, M. and Weyland, M.
    (See online at https://doi.org/10.1103/PhysRevB.91.235418)
  • Efficient current injection into single quantum dots through oxide-confined p-n-diodes, IEEE Trans. Electron Devices Vol. 63(5), 2036-2042 (2016)
    Kantner, M., Bandelow, U., Koprucki, T., Schulze, J.-H., Strittmatter, A.A., Wünsche, H.-J.
    (See online at https://doi.org/10.1109/TED.2016.2538561)
  • Exploring Dephasing of a Solid- State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments, Phys. Rev. Lett. Vol. 116(3), 033601 (2016)
    Thoma, A., Schnauber, P., Gschrey, M., Seifried, M., Wolters, J., Schulze, J.H., Strittmatter, A., Rodt, S., Carmele, A., Knorr, A., Heindel, T. and Reitzenstein, S.
    (See online at https://doi.org/10.1103/PhysRevLett.116.033601)
  • Halbleiterbauelement aus einem oder mehreren Elementen der Gruppe-III mit Stickstoff, Patent DE 10 2015 108 878.9 (Publication date: 2016/09/15)
    T. Zettler, C. Kaspari, Y. Tomita, A. Dadgar, C. Berger, and A. Strittmatter
  • Heterodimensional charge-carrier confinement in stacked submonolayer InAs in GaAs, Phys. Rev. B Vol. 93(8), 085302 (2016)
    Harrison, S., Young, M.P., Hodgson, P.D., Young, R.J., Hayne, M., Danos, L., Schliwa, A., Strittmatter, A., Lenz, A., Eisele, H., Pohl, U.W. and Bimberg, D.
    (See online at https://doi.org/10.1103/PhysRevB.93.085302)
  • Lichtemittierendes Gruppe-III-Nitrid basiertes Bauelement, Patent DE 10 2015 108 876.2 (Publication date: 2016/03/03)
    C. Berger, A. Dadgar, and A. Strittmatter
  • P-contact and light-emitting diode for the ultraviolet spectral range, US Patent 9,331,246 (Publication date 2016/05/03)
    M. Kneissl, M. Weyers, S. Einfeldt, H. Rodriguez
  • Suppression of Noise-Induced Modulations in Multidelay Systems, Phys. Rev. Lett. Vol. 117(15), 154101 (2016)
    Jaurigue, L., Schöll, E. and Lüdge, K.
    (See online at https://doi.org/10.1103/physrevlett.117.154101)
  • Temperature-dependent recombination coefficients in InGaN light-emitting diodes: Hole localization, Auger processes, and the green gap, Appl. Phys. Lett. Vol. 109(16), 161103 (2016)
    Nippert, F., Karpov, S.Y., Callsen, G., Galler, B., Kure, T., Nenstiel, C., Wagner, M.R., Straßburg, M., Lugauer, H.J. and Hoffmann, A.
    (See online at https://doi.org/10.1063/1.4965298)
  • A bright triggered twin-photon source in the solid state, Nat. Commun. Vol. 8(1), 14870 (2017)
    Heindel, T., Thoma, A., Von Helversen, M., Schmidt, M., Schlehahn, A., Gschrey, M., Schnauber, P., Schulze, J.H., Strittmatter, A., Beyer, J., Rodt, S., Carmele, A., Knorr, A. and Reitzenstein, S.
    (See online at https://doi.org/10.1038/ncomms14870)
  • Device comprising a high brightness broad-area edge-emitting semiconductor laser and method of making the same, US Patent No. 14/169, 5202014 (Publication date: 2017/07/11)
    V. P. Kalosha and D. Bimberg
  • Dispersive Time-Delay Dynamical Systems, Phys. Rev. Lett. Vol. 118(19), 193901 (2017)
    Pimenov, A., Slepneva, S., Huyet, G. and Vladimirov, A.G.
    (See online at https://doi.org/10.1103/PhysRevLett.118.193901)
  • Dynamic phase response and amplitude-phase coupling of self-assembled semiconductor quantum dots, Appl. Phys. Lett. Vol. 110(24), 241102 (2017)
    Lingnau, B., Herzog, B., Kolarczik, M., Woggon, U., Lüdge, K. and Owschimikow, N.
    (See online at https://doi.org/10.1063/1.4985705)
  • Hybrid quantum-classical modeling of quantum dot devices, Phys. Rev. B Vol. 96(20), 205301 (2017)
    Kantner, M., Mittnenzweig, M. and Koprucki, T.
    (See online at https://doi.org/10.1103/PhysRevB.96.205301)
  • Method for forming a metal contact on a surface of a semiconductor, and device with a metal contact, US Patent 9,768,356 (Publication date 2017/09/19)
    S. Einfeldt, L. Redaelli, M. Kneissl
  • Optoelectronic device, US Patent 9,599,782, (Publication date: 2017/03/21)
    A. Schlehahn, T. Heindel, S. Rodt, S. Reitzenstein
  • UV LED with tunnel-injection layer, US Patent 9,705,030 (Publication date 2017/07/11)
    M. Kneissl, T. Kolbe
  • A stand-alone fiber-coupled single-photon source, Sci. Rep. Vol. 8(1), 1340 (2018)
    Schlehahn, A., Fischbach, S., Schmidt, R., Kaganskiy, A., Strittmatter, A., Rodt, S., Heindel, T. and Reitzenstein, S.
    (See online at https://doi.org/10.1038/s41598-017-19049-4)
  • AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire, Appl. Phys. Lett. Vol. 112(4), 041110 (2018)
    Susilo, N., Hagedorn, S., Jaeger, D., Miyake, H., Zeimer, U., Reich, C., Neuschulz, B., Sulmoni, L., Guttmann, M., Mehnke, F., Kuhn, C., Wernicke, T., Weyers, M. and Kneissl, M.
    (See online at https://doi.org/10.1063/1.5010265)
  • Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography, Nano Lett. Vol. 18(4), 2336-2342 (2018)
    Schnauber, P., Schall, J., Bounouar, S., Höhne, T., Park, S.I., Ryu, G.H., Heindel, T., Burger, S., Song, J.D., Rodt, S. and Reitzenstein, S.
    (See online at https://doi.org/10.1021/acs.nanolett.7b05218)
  • Lichtemittierendes Halbleiterbauelement, DE 10 2018 115 225.6 (Publication date: 2018/06/25)
    A. Dadgar and A. Strittmatter
  • Method and sensor for detecting the presence of molecules with a dipole moment, European Patent: WO2018073356 (A1) (Publication date: 2018/04/26)
    M. Feierabend, E. Malic, G. Berhäuser, A. Knorr
  • Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber. Opt. Express 26, 8479 (2018)
    P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, S. Burger
    (See online at https://doi.org/10.1364/oe.26.008479)
  • Sideband pump-probe technique resolves nonlinear modulation response of PbS/CdS quantum dots on a silicon nitride waveguide, APL Photonics Vol. 3(1), 016101 (2018)
    Kolarczik, M., Ulbrich, C., Geiregat, P., Zhu, Y., Sagar, L.K., Singh, A., Herzog, B., Achtstein, A.W., Li, X., Thourhout, D.V., Hens, Z., Owschimikow, N. and Woggon, U.
    (See online at https://doi.org/10.1063/1.5005490)
  • Broadband Semiconductor Light Sources Operating at 1060 nm Based on InAs:Sb/GaAs Submonolayer Quantum Dots, IEEE J. Sel. Top. Quantum Electron. Vol. 25(6) 1-10 (2019)
    Herzog, B., Lingnau, B., Kolarczik, M., Helmrich, S., Achtstein, A.W., Thommes, K., Alhussein, F., Quandt, D., Strittmatter, A., Pohl, U.W., Brox, O., Weyers, M., Woggon, U., Ludge, K. and Owschimikow, N.
    (See online at https://doi.org/10.1109/JSTQE.2019.2919763)
  • MOVPE-grown AlGaN-based tunnel heterojunctions enabling fully transparent UVC LEDs, Photonics Res. Vol. 7(5), B7-B11 (2019)
    Kuhn, C., Sulmoni, L., Guttmann, M., Glaab, J., Susilo, N., Wernicke, T., Weyers, M. and Kneissl, M.
    (See online at https://doi.org/10.1364/PRJ.7.0000B7)
  • Optoelektronischer Oszillator, European Patent Office EP3011648B1 (Publication date: 2019/05/29)
    D. Arsenijević, M. Kleinert, and D. Bimberg
  • Power, Bandwidth, and Efficiency of Single VCSELs and Small VCSEL Arrays, IEEE J. Sel. Top. Quantum Electron. Vol. 25 (6), 1-15 (2019)
    Haghighi, N., Moser, P. and Lott, J.A.
    (See online at https://doi.org/10.1109/JSTQE.2019.2922843)
  • Template für laterales Überwachsen mindestens einer Gruppe-III-Nitrid-basierten Schicht, European Patent Office EP2747127B1 (Publication date: 2019/11/20)
    M. Weyers, M. Kneissl, V. Küller, S. Einfeldt, A. Knauer
  • The emergence and prospects of deep-ultraviolet light-emitting diode technologies, Vol. 13 (4), Nat. Photonics, 233-244 (2019)
    Kneissl, M., Seong, T.Y., Han, J. and Amano, H.
    (See online at https://doi.org/10.1038/s41566-019-0359-9)
  • 40 Gbps with Electrically Parallel Triple and Septuple 980 nm VCSEL Arrays, J. Light. Technol. (2020)
    Haghighi, N., Moser, P. and Lott, J.A.
    (See online at https://doi.org/10.1109/JLT.2019.2961931)
  • Semiconductor nanophotonics: materials, models, and devices, Springer Series in Solid-State Sciences 194, Springer International Publishing (2020)
    Kneissl, M.; Knorr, A.; Reitzenstein, S., and Hoffmann, A.
    (See online at https://doi.org/10.1007/978-3-030-35656-9)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung