Project Details
Brain mechanics across scales: linking microstructure, mechanics, and pathology (BRAINIACS)
Applicant
Professorin Dr.-Ing. Silvia Budday
Subject Area
Mechanics
Term
since 2019
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 418078657
The current research project aims to develop microstructurally motivated mechanical models for brain tissue that facilitate early diagnostics of neurodevelopmental or neurodegenerative diseases and enable the development of novel treatment strategies. In a first step, we will experimentally characterize the behavior of brain tissue across scales by using versatile testing techniques on the same sample. Through an accompanying microstructural analysis of both cellular and extra-cellular components, we will evaluate the complex interplay of brain structure, mechanics and function. We will also experimentally investigate dynamic changes in tissue properties during development and disease, due to changes in the mechanical environment of cells (mechanosensing), or external loading. Based on the simultaneous analysis of experimental and microstructural data, we will develop microstructurally motivated constitutive laws for the regionally varying mechanical behavior of brain tissue. In addition, we will develop evolution laws that predict remodeling processes during development, homeostasis, and disease. Through the implementation within a finite element framework, we will simulate the behavior of brain tissue under physiological and pathological conditions. We will predict how known biological processes on the cellular scale, such as changes in the tissue’s microstructure, translate into morphological changes on the macroscopic scale, which are easily detectable through modern imaging techniques. We will analyze progression of disease or mechanically-induced loss of brain function. The novel experimental procedures on the borderline of mechanics and biology, together with comprehensive theoretical and computational models, will form the cornerstone for predictive simulations that improve early diagnostics of pathological conditions, advance medical treatment strategies, and reduce the necessity of animal and human tissue experimentation. The established methodology will further open new pathways in the biofabrication of artificial organs.
DFG Programme
Independent Junior Research Groups
Major Instrumentation
Rheometer
Instrumentation Group
1610 Viskosimeter, Rheometer