Detailseite
Projekt Druckansicht

Konvection in tropischer Zyklonen und tropische Zyklogenese

Antragsteller Gerard Kilroy, Ph.D.
Fachliche Zuordnung Physik und Chemie der Atmosphäre
Förderung Förderung von 2018 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 409635636
 

Zusammenfassung der Projektergebnisse

Idealized, high-resolution (500m horizontal grid spacing), numerical simulations were used to investigate the evolution of convective structures during tropical cyclogenesis. The simulations all began with a weak initial axisymmetric cloud-free vortex in a quiescent environment, but differ in the moisture level of the initial sounding and whether or not ice microphysical processes are considered. Irrespective of experimental setup, there is only a short period where shallow or congestus clouds dominate. The shallow cloud phase is slightly extended with the drier initial environmental sounding. The composite structure of the convective elements sampled changes markedly throughout the genesis period. For much of the genesis phase, vertical profiles of the mean convective cell show significant amounts of anticyclonic vorticity produced in cells in the inner core. Towards the end of the genesis phase, there is a large increase in the production of cyclonic vertical vorticity in inner-core convection, and cyclonic vorticity becomes dominant at low-mid levels. The evolution from roughly equal strength vertical profiles of cyclonic/anticyclonic vorticity at low-mid levels to profiles where cyclonic vorticity dominates occurs at relatively low system wind speeds (Vmax less than 10 m/s). This finding indicates a change in the structure of vortical convection prior to rapid intensification.

Projektbezogene Publikationen (Auswahl)

  • 2020: Recent Advances in Research on Tropical Cyclogenesis. Tropical Cyclone Research and Review, Volume 9, Issue 2, 87-105
    Tang B, Fang J, Bentley A, Kilroy G, Nakano M, Park MS, Rajasree VPM, Wang Z, Wing A, Wu L
    (Siehe online unter https://doi.org/10.1016/j.tcrr.2020.04.004)
  • 2019: Control of Convection in High-Resolution Simulations of Tropical Cyclogenesis. J. Adv. Model. Earth Syst., 11, 1582-1599
    Raymond D and Kilroy G
    (Siehe online unter https://doi.org/10.1029/2018MS001576)
  • 2019: Tropical cyclogenesis at and near the Equator. Quart. J. Roy. Meteor. Soc. 145, 1846-1864
    Steenkamp SC, Kilroy G, Smith RK
    (Siehe online unter https://doi.org/10.1002/qj.3529)
  • 2020: An idealized numerical study of tropical cyclogenesis and evolution at the Equator. Quart. J. Roy. Meteor. Soc. 146, 685-699
    Kilroy G, Smith RK and Montgomery MT
    (Siehe online unter https://doi.org/10.1002/qj.3701)
  • 2020: Comments on: How much does the upward advection of supergradient component of boundary-layer wind contribute to tropical cyclone intensification and maximum intensity? J. Atmos. Sci. 77(12), 4377-4378
    Smith RK, Kilroy G, and Montgomery MT
    (Siehe online unter https://doi.org/10.1175/JAS-D-20-0185.1)
  • 2020: Contribution of mean and eddy momentum processes to tropical cyclone intensification. Quart. J. Roy. Meteor. Soc. 146, 3101-3117
    Montgomery MT, Kilroy G, Smith RK, and Črnivec N
    (Siehe online unter https://doi.org/10.1002/qj.3837)
  • 2021: Evolution of Convective Characteristics During Tropical Cyclogenesis. Quart. J. Roy. Meteor. Soc. 147, 2103-2123
    Kilroy G
    (Siehe online unter https://doi.org/10.1002/qj.4011)
  • 2021: Tropical cyclone life cycle in a threedimensional numerical simulation. Quart. J. Roy. Meteor. Soc. 147, 3373-3393
    Smith RK, Kilroy G, and Montgomery MT
    (Siehe online unter https://doi.org/10.1002/qj.4133)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung