Project Details
Projekt Print View

Tuning vanadium dioxide films by extreme straining - local investigations on transition phenomena and exotic phases

Subject Area Experimental Condensed Matter Physics
Term from 2017 to 2021
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 362536548
 
Vanadium dioxide is a correlated oxide with a metal-insulator transition at approximately 340 K. This transition is accompanied by a structural phase transition from the rutile metallic high-temperature structure to the monoclinic insulating low-temperature structure. The transition temperature can be tuned over a broad range by applying mechanical strain; also external electrical fields may drive the transition. Moreover, it is known that under mechanical straining further, exotic phases may occur. Consequently, vanadium dioxide exhibits a large potential for applications, e.g., in oxide electronics provided that these materials properties may be controlled and manipulated as thin films.In this project we investigate simultaneously and in situ the growth and the structural and electronic properties of vanadium dioxide films on ruthenium dioxide surfaces of different orientations by low-energy electron microscopy (LEEM). We exploit the fact that oxidizing the ruthenium surfaces leads to the coexistence of different crystallographically oriented ruthenium dioxide islands that will act as templates in subsequent vanadia growth. The lattice mismatch between vanadia and ruthenia suggests the occurrence of differently and, in some cases, extremely strained vanadia depending on its orientation. Due to this extreme straining, we expect the occurrence of novel, exotic phases and, more generally, a considerably broadened tuning range for the transition temperature of vanadia. These phases will be thoroughly characterized by LEEM and related local diffraction and spectroscopy techniques, including synchrotron-assisted methods. In a parallel effort, we aim to employ scanning probe microscopy to obtain unique insights into small-scale phase separation phenomena and also address, mindful of potential applications, the influence of applied electrical fields. Furthermore, we will extend our studies to ruthenium thin films deposited on sapphire substrates by magnetron sputtering, thereby pushing for higher technological relevance.
DFG Programme Research Grants
 
 

Additional Information

Textvergrößerung und Kontrastanpassung