Project Details
Projekt Print View

Developing an early vision model of lightness perception: experiment and theory

Subject Area General, Cognitive and Mathematical Psychology
Term from 2016 to 2021
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 315679826
 
Final Report Year 2022

Final Report Abstract

Eine zentrale Frage der Forschung zu menschlicher visueller Wahrnehmung ist wie aus dem Erregungsmuster auf der Netzhaut bedeutsame Wahrnehmungsinhalte entstehen. In meiner Forschung untersuche ich die Frage im Bereich der Helligkeitswahrnehmung, d.h. es geht darum zu verstehen wie aus der Antwort der Photorezeptoren, die proportional zur einfallenden Lichtmenge variiert, die Helligkeit von Flächen kodiert wird. Dass dieser Zusammenhang nicht „eins-zu-eins“ ist, zeigen selbst so einfache Phänomene wie Simultaner Helligkeitseffekt und White’s Effekt, wo zwei Flächen mit identischem Grauwert unterschiedlich hell wahrgenommen werden, wenn sie auf dunklem oder hellem Grund gezeigt werden. Während das Feld auf hellem Grund im Simultanen Helligkeitskontrast dunkler aussieht, sieht das Feld, das in White’s Effekt mehr Kante mit weiß teilt, heller aus. Während zumindest einige computationale Modelle für diese verhältnismäßig einfachen Reize noch korrekte Vorhersagen machen, wird es dann für „komplexere“ Reize wie die Dungeon-Illusion schon deutlich schwieriger und für andere Phänomene wie Adelson’s Schachbrettmuster haben wir noch kein computationales Modell, das uns auf Basis des Bildes eine Vorhersage über die Helligkeit aller Flächen machen würde. Eines der größten Probleme im Bereich der Forschung zu (Helligkeits-)Wahrnehmung ist, dass sowohl die bisher existierenden Modelle als auch die meisten verwendeten Stimuli nicht öffentlich zugänglich sind. Der dazu notwendige Programmcode ist im besten Fall auf Anfrage von den AutorInnen erhältlich und häufig schlecht dokumentiert. Daher war eine der Hauptanstrengungen in diesem Projekt, ein open source-Framework zu schaffen, in dem die wichtigsten Modelle und ein Benchmark-Set von Stimuli implementiert und für jeden frei verfügbar sind. Das ist gelungen. Wir haben BRENCH (Brightness benchmark) entwickelt und bereits auf Konferenzen vorgestellt. Das Framework erlaubt, Modellvorhersagen verschiedener Modelle (aus verschiedenen Publikationen) für verschiedene Stimuli zu berechnen und miteinander zu vergleichen. Das erleichtert Replikationsversuche und erhöht die Transparenz des Vorgehens. Außerdem erlaubt BRENCH Vorhersagen für extreme Stimuli zu machen, die maximal zwischen Modellen differenzieren können und dann genau diese Stimuli mit Beobachtern zu testen. Das erhöht die experimentelle Effizienz.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung