Non-Abelian anyons

Applicant Professor Dr. Holger Frahm
Subject Area Theoretical Condensed Matter Physics
Term from 2015 to 2019
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 267822229
 

Project Description

Quasi particles in topological quantum liquids such as the fractional Quantum Hall states and certain two-dimensional frustrated magnets display unconventional quantum statistics. The conserved topological charge of these non-Abelian anyons is protected and has spawned interest for such systems in the context of quantum computation.In this project we plan to study the properties of interacting many-anyon systems whose construction is based on the mathematical structures describing the fundamental operations of fusion and braiding. Upon fine-tuning of the interactions these models can be embedded into a family of commuting operators. We shall develop functional methods to exploit local identities present in these integrable models for the solution of their spectral problem. Our investigation of integrable anyon chains will be complemented by studies of non-integrable deformations thereof to gain understanding into the emergence of unconventional boundary degrees of freedom and their realization as topological quantum impurities in electronic systems.
DFG Programme Research Units
Subproject of FOR 2316:  Correlations in Integrable Quantum Many-Body Systems
International Connection Canada
Co-Investigator Professor Dr. Jesko Sirker