Uniqueness, non-uniqueness and conditional stability of solutions to the Cauchy problem for degenerate elliptic differential equations with low-regular coefficients

Applicant Professor Dr. Michael Reissig
Subject Area Mathematics
Term from 2015 to 2017
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 278164640
 

Final Report

Final Report Year 2017

Final Report Abstract

Im Rahmen des Projektes wurden verschiedene Methoden zur Behandlung spezieller Modelle der Kosmologie entwickelt. Dabei handelt es sich um Modelle der Form ∂2t ψ − a(t)A(x, ∂x )ψ + d(t) ∂t ψ + m2 ψ = |ψ|p , ψ(0, x) = f (x), ψt (0, x) = g(x), mit speziellen zeitabhängigen Koeffizienten a = a(t) und d = d(t). In Zukunft ist es möglich, solche Modelle mit Daten schwacher Regularität, aber auch Modelle mit Daten höherer Regularität zu behandeln. Die dazu notwendigen Hilfsmittel aus der Harmonischen Analysis wurden bereitgestellt bzw. auch selber entwickelt. Es existieren keine Einschränkungen mehr an den Koeffizienten m2. Die durchgeführten Untersuchungen erlauben Vermutungen über das kritische nichtlineare Verhalten, welches ein blow-up Verhalten geeigneter Lösungen impliziert. Erste blow-up Resultate liegen vor.

Publications

DFG Programme Research Grants
International Connection USA
Cooperation Partner Professor Dr. Karen Yagdjian