Detailseite
Zwei-Skalen-Konvergenz in Räumen versehen mit stochastischen Maßen: Anwendungen in der Plastizitätstheorie
Antragsteller
Dr. Sergiy Nesenenko
Fachliche Zuordnung
Mathematik
Mechanische Eigenschaften von metallischen Werkstoffen und ihre mikrostrukturellen Ursachen
Mechanische Eigenschaften von metallischen Werkstoffen und ihre mikrostrukturellen Ursachen
Förderung
Förderung von 2015 bis 2019
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 273738974
Die Erforschung und Herstellung von neuen Werkstoffen basiert stark auf der Entwicklung von adäquaten Modellen zur Beschreibung des makroskopischen Verhalten von Materialien mit Mikrostruktur. In diesen Modellen müssen die Informationen aus einer Mikroskala über die hier vorhandenen Verbundstrukturen und Werkstoffmechanismen, die das Materialverhalten auf einer Makroskala bestimmen, inkorporiert werden. Experimentell ist es gut nachgewiesen, dass die Behinderung der Versetzungsbewegung durch verschiedene Mikro-Legierungselemente, andere Versetzungen oder durch Korngrenzen zu Aushärtungserscheinungen, die auf dem Makroniveau beobachtet werden können, führt. Die Keimbildung und die Vermehrung von Leerstellen führen zur Entwicklung von Mikrorissen entlang von Korngrenzen und weiter bis zum Versagen oder Bruch des Materials.Eine direkte Simulation von Modellen mit mehreren Skalen ist in der Regel aufgrund der Notwendigkeit, ein sehr feines Netz zu verwenden, um die Skaleneffekte zu erfassen, sogar auf modernen Rechnern numerisch sehr aufwendig. Für Werkstoffe, die eine periodische/stochastische Mikrostruktur besitzen, werden daher zur Entwicklung von effizienten numerischen Algorithmen verschiedene Homogenisierung-Methoden eingesetzt. Diese Methoden ermöglichen den mathematisch rigorosen Übergang von einer mikroskopischen zu einer makroskopischen Beschreibung des Werkstoffverhaltens. In dieser Arbeit muss die mathematisch rigorose Beschreibung der makroskopischen Evolution der elasto/visko-plastischen Materialien mit stochastisch verteilten oder geometrisch periodischen Verbundstrukturen unterschiedlicher Geometrie während der Deformation in den Sobolev-Räumen mit Maßen hergeleitet werden. Untersucht werden muss auch die Abhäangigkeit der makroskopischen Eigenschaften der mikro-strukturierten Materialien von der Form der konstituierenden Microinklusionen, von ihrer Konzentration, von ihrer geometrischen Anordnung und von den Materialparametern ihrer Bestandteile.
DFG-Verfahren
Sachbeihilfen
Mitverantwortlich
Privatdozent Dr. Kersten Schmidt