Detailseite
Rate Optimality of Adaptive Finite Elements for Parabolic Partial Differential Equations
Antragsteller
Professor Dr. Kunibert G. Siebert
Fachliche Zuordnung
Mathematik
Förderung
Förderung von 2015 bis 2019
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 273218570
Erstellungsjahr
2019
Zusammenfassung der Projektergebnisse
The most important advances made during the project were without a doubt the the design and analysis of the TAFEM algorithm and the a posteriori analysis for dG(s) in time discretizations, as well as a simplified algorithm and the extension of the result to isogeometric discretizations which we expect to be extensible to more general problems. The H1-stability result for the L2-projection also helped extend the type of refinement and polynomial degree for which the quasi-best approximation result holds true, as well as many other applications.
Projektbezogene Publikationen (Auswahl)
- A Weak Compatibility Condition for Newest Vertex Bisection in Any Dimension. SIAM J. Sci. Comput., 40(6):A3853–A3872, 2018
M. Alkämper, F. D. Gaspoz, and R. Klöfkorn
(Siehe online unter https://doi.org/10.1137/17M1156137) - A convergent time-space adaptive dG(s) finite element method for parabolic problems motivated by equal error distribution. IMA J. of Numer. Anal., 39(2):650–686, 2019
F. D. Gaspoz, C. Kreuzer, K. G. Siebert, and D. Ziegler
(Siehe online unter https://doi.org/10.1093/imanum/dry005) - An Alternative Proof of the H1-Stability of the L2 -Projection on Graded Meshes. Stuttgarter Mathematische Berichte 2019-001, Universität Stuttgart, ISSN 1613-8309
F. D. Gaspoz, C.-J. Heine and K. G. Siebert