Project Details
Willmore surfaces in Riemannian manifolds
Applicants
Professor Dr. Tobias Lamm; Professor Dr. Jan Metzger
Subject Area
Mathematics
Term
from 2013 to 2020
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 245965278
Final Report Year
2020
Final Report Abstract
No abstract available
Publications
- Optimal rigidity estimates for nearly umbilical surfaces in arbitrary codimension. Geom. Funct. Anal., 24(6):2029–2062, 2014
T. Lamm and R. M. Schätzle
(See online at https://doi.org/10.1007/s00039-014-0303-6) - Rigidity and non-rigidity results for conformal immersions. Adv. Math., 281:1178–1201, 2015
T. Lamm and R. M. Schätzle
(See online at https://doi.org/10.1016/j.aim.2015.06.006) - A note on Willmore minimizing Klein bottles in Euclidean space. Adv. Math., 319:67–75, 2017
J. Hirsch and E. Mäder-Baumdicker
(See online at https://doi.org/10.1016/j.aim.2017.08.021) - Existence of minimizing Willmore Klein bottles in Euclidean four-space. Geom. Topol., 21(4):2485–2526, 2017
P. Breuning, J. Hirsch, and E. Mäder-Baumdicker
(See online at https://doi.org/10.2140/gt.2017.21.2485) - Isoperimetric structure of asymptotically conical manifolds. J. Differential Geom., 105(1):1–19, 2017
O. Chodosh, M. Eichmair, and A. Volkmann
(See online at https://doi.org/10.4310/jdg/1483655857) - Conformal Willmore tori in R4. J. Reine Angew. Math., 742:281–301, 2018
T. Lamm and R. M. Schätzle
(See online at https://doi.org/10.1515/crelle-2015-0101) - Local foliation of manifolds by surfaces of willmore type. 2018. Ann. Inst. Fourier (Grenoble)
T. Lamm, J. Metzger, and F. Schulze
- Concentration of small hawking type surfaces. 2019
A. Friedrich
- Minimizers of Generalized Willmore Energies and Applications in General Relativity. PhD thesis, Universität Potsdam, September 2019
A. Friedrich
- Minimizers of generalized willmore functionals. 2019
A. Friedrich
- Refined position estimates for surfaces of willmore type in riemannian manifolds. 2019
J. Metzger