Detailseite
Projekt Druckansicht

Periodisch getriebene Quantenphasenübergänge

Antragsteller Privatdozent Dr. Gernot Schaller, seit 4/2017
Fachliche Zuordnung Theoretische Physik der kondensierten Materie
Optik, Quantenoptik und Physik der Atome, Moleküle und Plasmen
Förderung Förderung von 2013 bis 2019
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 235452962
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

The first part of the project dealt with periodic-driving extensions of models that exhibit ground state, excited state, or topological quantum phase transitions. Under the assumption of fast driving, the dynamics is stroboscopically governed by an effective Floquet Hamiltonian. This new effective Floquet Hamiltonian can exhibit a plethora of additional interesting properties, for example new critical points/lines separating new phases or excited state quantum phase transitions. In particular, topological transitions were found to be related to dynamical instabilities. In effect, this first part of the project has established for a large number of examples that periodic driving is a useful tool to explore and engineer nonequilibrium states of matter. From the perspective of quantum simulation, effective Floquet Hamiltonians can be stroboscopically simulated by simpler but driven models. Aiming more at applications, the second part of the project extended the discussion to periodically driven dissipative systems. As a benchmark model, new analytic expansions of the driven spin-boson model have been derived. Furthermore, by employing an extended space representation, tools from Full Counting Statistics and reaction-coordinate mappings have been used to derive generalized master equations for driven open systems beyond the standard weak coupling limit that also allow to infer the heat exchange statistics with the reservoirs. Applying this to concrete questions, it has been possible to analyze periodically driven open systems as the working fluid of a quantum heat engine or an electron pump. The methods derived within the project are universally applicable also to other setups and may have impact on Floquet engineering, stroboscopic simulation of Hamiltonians, heat engines, and electron pumps.

Projektbezogene Publikationen (Auswahl)

  • ac-driven quantum phase transition in the Lipkin-Meshkov-Glick model, Physical Review E 87, 052110 (2013)
    G. Engelhardt, V. M. Bastidas, C. Emary, and T. Brandes
    (Siehe online unter https://doi.org/10.1103/PhysRevE.87.052110)
  • Quantum Criticality and Dynamical Instability in the Kicked-Top Model, Phyical Review Letters 112, 140408 (2014)
    V. M Bastidas, P. Perez-Fernandez, M. Vogl, and T. Brandes
    (Siehe online unter https://doi.org/10.1103/PhysRevLett.112.140408)
  • Excited-state quantum phase transitions and periodic dynamics, Physical Review A 91, 013631 (2015)
    G. Engelhardt, V. M. Bastidas, W. Kopylov, and T. Brandes
    (Siehe online unter https://doi.org/10.1103/PhysRevA.91.013631)
  • Driven Open Quantum Systems and Floquet Stroboscopic Dynamics, Physical Review Letters 117, 250401 (2016)
    S. Restrepo, J. Cerrillo, V. M. Bastidas, D. G. Angelakis, and T. Brandes
    (Siehe online unter https://doi.org/10.1103/PhysRevLett.117.250401)
  • Random-walk topological transition revealed via electron counting, Physical Review B 96, 241404(R) (2017)
    G. Engelhardt, M. Benito, G. Platero, G. Schaller, and T. Brandes
    (Siehe online unter https://doi.org/10.1103/PhysRevB.96.241404)
  • From quantum heat engines to laser cooling: Floquet theory beyond the Born–Markov approximation. New Journal of Physics 20, 053063 (2018)
    S. Restrepo, J. Cerrillo, P. Strasberg, and G. Schaller
    (Siehe online unter https://doi.org/10.1088/1367-2630/aac583)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung