Detailseite
Projekt Druckansicht

Materials World Network: Understanding and exploiting mixed, ultra-fast optical electrical behavior in nanoscale phase change materials

Fachliche Zuordnung Experimentelle Physik der kondensierten Materie
Förderung Förderung von 2012 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 221510646
 
Erstellungsjahr 2017

Zusammenfassung der Projektergebnisse

Within the project several milestone achievements with regards to the integration of phase change materials in nanophotonic circuits where achieved. This concerns the development of a robust fabrication platform, which enables a wide range of functional devices to be realized using top down nanofabrication with traditional nanoprocessing methods. This way high yield and high reproducibility can be obtained, paired with a flexible layout and design approach. We were able to show that by placing phase change materials directly in the optical near field of a waveguide, all-optical operation is an effective method for inducing phase transitions on chip. This on the one hand removes the diffraction limit from the interaction volume and thus allows for realizing truly nanoscale structures. On the other hand it allows for exploiting the rich toolbox of nanophotonics for analyzing phase change materials in a chipscale framework. A breakthrough achievement was the demonstration of the first nonvolatile all-optical memory with multi-level storage, which interfaces directly with integrated optical systems. We further showed that such devices can be conveniently operated with picosecond optical pulses, allowing implementing optical switches on chip. In combination with electrical connection we then demonstrated the originally planned mixed-mode operation of optoelectronic elements and thus achieved our initially set project goals. Given the successful completion of the project goals we anticipate further avenues for continued research for hybrid phase change nanophotonic devices.

Projektbezogene Publikationen (Auswahl)

  • “On-chip photonic memory elements employing phase change materials”, Advanced Materials 26, 1372 (2014)
    C. Rios, P. Hosseini, D. Wright, H. Bhaskaran, and W.H.P. Pernice
    (Siehe online unter https://doi.org/10.1002/adma.201304476)
  • „Integrated all-photonic nonvolatile multi-level memory“, Nature Photonics 9, 725 (2015)
    C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, H. Bhaskaran, W.H.P. Pernice
    (Siehe online unter https://doi.org/10.1038/NPHOTON.2015.182)
  • Nanophotonic spatial light modulator, US Patent 9470955 B2, 18.10.2016
    W. Pernice, H. Bhaskaran
  • “Thermo-optical Effect in Phase-Change Nanophotonics”, ACS Photonics 3, 828-835 (2016)
    M. Stegmaier, C. Rios, H. Bhaskaran and W.H.P. Pernice
    (Siehe online unter https://doi.org/10.1021/acsphotonics.6b00032)
  • „Nichtflüchtiger optischer Speicher in photonischen Schaltkreisen“, Physik unserer Zeit 47, 9 (2016)
    M. Stegmaier and W.H.P. Pernice
    (Siehe online unter https://doi.org/10.1002/piuz.201690014)
  • “Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits”, Nano Letters 17, 150 (2017)
    Y. Lu, M. Stegmaier, P. Nukala, M. A. Giambra, S. Ferrari, A. Busacca, W.H.P. Pernice, and R. Agarwal
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.6b03688)
  • “Nonvolatile ́All-Optical 1 × 2 Switch for Chipscale Photonic Networks”, Advanced Optical Materials 5, 1600346 (2017)
    M. Stegmaier, C. Ríos, H. Bhaskaran, C.D. Wright and W.H.P. Pernice
    (Siehe online unter https://doi.org/10.1002/adom.201600346)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung