Project Details
Projekt Print View

SPP 1666:  Topological Insulators: Materials - Fundamental Properties - Devices

Subject Area Physics
Term from 2013 to 2023
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 220179758
 
Final Report Year 2024

Final Report Abstract

Topological insulators are materials that are electrically insulating in the bulk but can conduct electricity due to topologically protected electronic edge or surface states. These materials are important for a future type of electronics with significantly reduced energy consumption, among other reasons because the current is lossless. The topological states at the same time lead to quantum effects which can be exploited in metrology, where they can be used as for a new standard for electrical resistance. At present these standards require equipment to produce high magnetic fields, whereas the topological materials can use their built-in magnetic field. And the third major prospective application area is a topological form of quantum computing. Quantum computing can solve problems too difficult for conventional computers, for example in chemistry and pharmacology. There are many different approaches to quantum computers, however, at present one needs for all of them 100 to 1000 times more processing units than with topological quantum computing due to its principle stability against noise. Within the SPP1666 a new class of topological matter has been produced for the first time, the so-called topological Weyl semimetals, one example is niobium phosphide. These materials have special properties, for example there electrical conduction reacts very strongly to magnetic fields. Fundamentally new effects have been predicted, the observation of which has come closer in SPP1666. Another class of topological insulators discovered and classified for the first time in SPP 1666 are higher-order topological insulators. Here, novel topological states have been predicted. This enlarges the range of possible materials with topological effects enormously. One of the two main topological quantum effects, the quantum spin Hall effect could be improved with a new material synthesized for the first time in the SPP1666. The operating temperature could be increased from lowest temperatures almost a hundredfold and in principle reaches room temperature, judging by the spectroscopic data. The material is "bismuthene" with the honeycomb structure of graphite or graphene, but with an atomic layer of bismuth instead of carbon atoms. The other important topological quantum effect is called anomalous quantum Hall effect. It is the most promising candidate to replace the present quantum Hall effect standard for resistance. Here it is necessary to produce a magnetic topological material. This had so far only been possible by introducing magnetic impurities. In the SPP1666, stoichiometric magnetic topological insulators haven been discovered with a high concentration of the magnetic material instead of dilute impurities. Accordingly, the desired effects are significantly more pronounced and the application with a product has become more likely. This may lead to a new resistance normal but eventually could also be used for topological quantum computing. A topological quantum computer requires first of all to combine different properties such as superconductivity and magnetism with topological material. In the SPP1666 important observations have been made for various platforms which allow to distinguish the desired effects from other similarly looking effects.

Publications

  • Controllable Magnetic Doping of the Surface State of a Topological Insulator. Physical Review Letters, 110(12).
    Schlenk, T.; Bianchi, M.; Koleini, M.; Eich, A.; Pietzsch, O.; Wehling, T. O.; Frauenheim, T.; Balatsky, A.; Mi, J.-L.; Iversen, B. B.; Wiebe, J.; Khajetoorians, A. A.; Hofmann, Ph. & Wiesendanger, R.
  • Photocurrent response of topological insulator surface states. Physical Review B, 88(7).
    Junck, Alexandra; Refael, Gil & von Oppen, Felix
  • Conductivity of a generic helical liquid. Physical Review B, 90(7).
    Kainaris, Nikolaos; Gornyi, Igor V.; Carr, Sam T. & Mirlin, Alexander D.
  • Deposition of topological insulator Sb2Te3 films by an MOCVD process. Journal of Materials Chemistry A, 2(22), 8215.
    Bendt, Georg; Zastrow, Sebastian; Nielsch, Kornelius; Mandal, Partha Sarathi; Sánchez-Barriga, Jaime; Rader, Oliver & Schulz, Stephan
  • Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nature Communications, 5(1).
    Jourdan, M.; Minár, J.; Braun, J.; Kronenberg, A.; Chadov, S.; Balke, B.; Gloskovskii, A.; Kolbe, M.; Elmers, H.J.; Schönhense, G.; Ebert, H.; Felser, C. & Kläui, M.
  • Coherent ultrafast spin-dynamics probed in three dimensional topological insulators. Scientific Reports, 5(1).
    Boschini, F.; Mansurova, M.; Mussler, G.; Kampmeier, J.; Grützmacher, D.; Braun, L.; Katmis, F.; Moodera, J. S.; Dallera, C.; Carpene, E.; Franz, C.; Czerner, M.; Heiliger, C.; Kampfrath, T. & Münzenberg, M.
  • Coincidence of superparamagnetism and perfect quantization in the quantum anomalous Hall state. Physical Review B, 92(20).
    Grauer, S.; Schreyeck, S.; Winnerlein, M.; Brunner, K.; Gould, C. & Molenkamp, L. W.
  • Interacting Surface States of Three-Dimensional Topological Insulators. Physical Review Letters, 115(1).
    Neupert, Titus; Rachel, Stephan; Thomale, Ronny & Greiter, Martin
  • Magnetotransport in disordered two-dimensional topological insulators: signatures of charge puddles. 2D Materials, 2(2), 024005.
    Essert, Sven & Richter, Klaus
  • Spin Chirality Tuning and Topological Semimetals in StrainedHgTexS1−x. Physical Review Letters, 114(23).
    Rauch, Tomáš; Achilles, Steven; Henk, Jürgen & Mertig, Ingrid
  • Superconducting proximity effect in three-dimensional topological insulators in the presence of a magnetic field. Physical Review B, 92(20).
    Burset, Pablo; Lu, Bo; Tkachov, Grigory; Tanaka, Yukio; Hankiewicz, Ewelina M. & Trauzettel, Björn
  • A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature, 533(7604), 513-516.
    Katmis, Ferhat; Lauter, Valeria; Nogueira, Flavio S.; Assaf, Badih A.; Jamer, Michelle E.; Wei, Peng; Satpati, Biswarup; Freeland, John W.; Eremin, Ilya; Heiman, Don; Jarillo-Herrero, Pablo & Moodera, Jagadeesh S.
  • Current-Induced Spin Polarization in Topological Insulator–Graphene Heterostructures. Nano Letters, 16(4), 2595-2602.
    Vaklinova, Kristina; Hoyer, Alexander; Burghard, Marko & Kern, Klaus
  • Dual nature of magnetic dopants and competing trends in topological insulators. Nature Communications, 7(1).
    Sessi, Paolo; Biswas, Rudro R.; Bathon, Thomas; Storz, Oliver; Wilfert, Stefan; Barla, Alessandro; Kokh, Konstantin A.; Tereshchenko, Oleg E.; Fauth, Kai; Bode, Matthias & Balatsky, Alexander V.
  • Towards Realistic Implementations of a Majorana Surface Code. Physical Review Letters, 116(5).
    Landau, L. A.; Plugge, S.; Sela, E.; Altland, A.; Albrecht, S. M. & Egger, R.
  • Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 357(6348), 287-290.
    Reis, F.; Li, G.; Dudy, L.; Bauernfeind, M.; Glass, S.; Hanke, W.; Thomale, R.; Schäfer, J. & Claessen, R.
  • Circular and linear photogalvanic effects in type-II GaSb/InAs quantum well structures in the inverted regime. Physica E: Low-dimensional Systems and Nanostructures, 85(c(2017, 1)), 193-198.
    Plank, H.; Tarasenko, S.A.; Hummel, T.; Knebl, G.; Pfeffer, P.; Kamp, M.; Höfling, S. & Ganichev, S.D.
  • Designing 3D topological insulators by 2D-Xene (X = Ge, Sn) sheet functionalization in GaGeTe-type structures. Journal of Materials Chemistry C, 5(19), 4752-4762.
    Pielnhofer, F.; Menshchikova, T. V.; Rusinov, I. P.; Zeugner, A.; Yu. Sklyadneva, I.; Heid, R.; Bohnen, K.-P.; Golub, P.; Baranov, A. I.; Chulkov, E. V.; Pfitzner, A.; Ruck, M. & Isaeva, A.
  • Stability of Weyl points in magnetic half-metallic Heusler compounds. Physical Review B, 96(2).
    Chadov, Stanislav; Wu, Shu-Chun; Felser, Claudia & Galanakis, Iosif
  • Two-dimensional topological nodal line semimetal in layered Sr, and Ba, Sb, and Bi. Physical Review B, 95(23).
    Niu, Chengwang; Buhl, Patrick M.; Bihlmayer, Gustav; Wortmann, Daniel; Dai, Ying; Blügel, Stefan & Mokrousov, Yuriy
  • Probing spin helical surface states in topological HgTe nanowires. Physical Review B, 97(3).
    Ziegler, J.; Kozlovsky, R.; Gorini, C.; Liu, M.-H.; Weishäupl, S.; Maier, H.; Fischer, R.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N.; Dvoretsky, S. A.; Richter, K. & Weiss, D.
  • Proximity-Induced Superconductivity and Quantum Interference in Topological Crystalline Insulator SnTe Thin-Film Devices. Nano Letters, 18(2), 1264–1268.
    Klett, R.; Schönle, J.; Becker, A.; Dyck, D.; Borisov, K.; Rott, K.; Ramermann, D.; Büker, B.; Haskenhoff, J.; Krieft, J.; Hübner, T.; Reimer, O.; Shekhar, C.; Schmalhorst, J.-M.; Hütten, A.; Felser, C.; Wernsdorfer, W. & Reiss, G.
  • Band structure engineering in 3D topological insulators. Journal of Physics: Condensed Matter, 31(18), 183001.
    Plucinski, L
  • Interacting topological edge channels. Nature Physics, 16(1), 83-88.
    Strunz, Jonas; Wiedenmann, Jonas; Fleckenstein, Christoph; Lunczer, Lukas; Beugeling, Wouter; Müller, Valentin L.; Shekhar, Pragya; Ziani, Niccolò Traverso; Shamim, Saquib; Kleinlein, Johannes; Buhmann, Hartmut; Trauzettel, Björn & Molenkamp, Laurens W.
  • Magnetotransport measurements on Bi2Te3 nanowires electrodeposited in etched ion-track membranes. Journal of Physics and Chemistry of Solids, 128(c(2019, 5)), 360-366.
    Krieg, J.; Giraud, R.; Funke, H.; Dufouleur, J.; Escoffier, Walter; Trautmann, C. & Toimil-Molares, M.E.
  • Mixed topological semimetals driven by orbital complexity in two-dimensional ferromagnets. Nature Communications, 10(1).
    Niu, Chengwang; Hanke, Jan-Philipp; Buhl, Patrick M.; Zhang, Hongbin; Plucinski, Lukasz; Wortmann, Daniel; Blügel, Stefan; Bihlmayer, Gustav & Mokrousov, Yuriy
  • Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi2Te4 Films. Physical Review Letters, 122(10).
    Otrokov, M. M.; Rusinov, I. P.; Blanco-Rey, M.; Hoffmann, M.; Vyazovskaya, A. Yu.; Eremeev, S. V.; Ernst, A.; Echenique, P. M.; Arnau, A. & Chulkov, E. V.
  • Voltage-tunable Majorana bound states in time-reversal symmetric bilayer quantum spin Hall hybrid systems. Physical Review B, 100(16).
    Schulz, F.; Budich, J. C.; Novik, E. G.; Recher, P. & Trauzettel, B.
  • Ab Initio Theory of Fourier‐Transformed Quasiparticle Interference Maps and Application to the Topological Insulator Bi2Te3. physica status solidi (b), 258(1).
    Rüßmann, Philipp; Mavropoulos, Phivos & Blügel, Stefan
  • Anomalous Hall Effect and Magnetoresistance in Sputter‐Deposited Magnetic Weyl Semimetal Co2TiGe Thin Films. physica status solidi (b), 258(1).
    Dyck, Denis; Becker, Andreas; Koo, Jungwoo; Matalla-Wagner, Tristan; Krieft, Jan & Reiss, Günter
  • Challenges of Topological Insulator Research: Bi2Te3 Thin Films and Magnetic Heterostructures. physica status solidi (b), 258(1).
    Pereira, Vanda M.; Wu, Chi-Nan; Höfer, Katharina; Choa, Arnold; Knight, Cariad-A.; Swanson, Jesse; Becker, Christoph; Komarek, Alexander C.; Rata, A. Diana; Rößler, Sahana; Wirth, Steffen; Guo, Mengxin; Hong, Minghwei; Kwo, Jueinai; Tjeng, Liu Hao & Altendorf, Simone G.
  • Comparative Scanning Tunneling Microscopy Study on Hexaborides. physica status solidi (b), 258(1).
    Wirth, Steffen; Rößler, Sahana; Jiao, Lin; Ale Crivillero, Maria Victoria; Rosa, Priscila F. S. & Fisk, Zachary
  • Determination of Out‐of‐Plane Spin Polarization of Topological Surface States by Spin Hall Effect Tunneling Spectroscopy. physica status solidi (b), 258(1).
    Götte, Matthias & Dahm, Thomas
  • Heterostructures of Graphene and Topological Insulators Bi2Se3, Bi2Te3, and Sb2Te3. physica status solidi (b), 258(1).
    Zollner, Klaus & Fabian, Jaroslav
  • Higher‐Order Topological Band Structures. physica status solidi (b), 258(1).
    Trifunovic, Luka & Brouwer, Piet W.
  • Molecular‐Beam Epitaxy of 3D Topological Insulator Thin Films and Devices on Si Substrates. physica status solidi (b), 258(1).
    Mussler, Gregor
  • Quantum Transport in Nanostructures of 3D Topological Insulators. physica status solidi (b), 258(1).
    Giraud, Romain & Dufouleur, Joseph
  • Reducing the Impact of Bulk Doping on Transport Properties of Bi‐Based 3D Topological Insulators. physica status solidi (b), 258(1).
    Jafarpisheh, Shaham; Ju, An; Janßen, Kevin; Taniguchi, Takashi; Watanabe, Kenji; Stampfer, Christoph & Beschoten, Bernd
  • Strong and Weak 3D Topological Insulators Probed by Surface Science Methods. physica status solidi (b), 258(1).
    Morgenstern, Markus; Pauly, Christian; Kellner, Jens; Liebmann, Marcus; Pratzer, Marco; Bihlmayer, Gustav; Eschbach, Markus; Plucinski, Lukacz; Otto, Sebastian; Rasche, Bertold; Ruck, Michael; Richter, Manuel; Just, Sven; Lüpke, Felix & Voigtländer, Bert
  • Structure and Magnetism of EuS on Bi2Se3physica status solidi (b), 258(1).
    Meyerheim, Holger L.; Ernst, Arthur; Mohseni, Katayoon; Polyakov, Andrey; Maznichenko, Igor V.; Buczek, Pawel A.; Coati, Alessandro & Parkin, Stuart S. P.
  • Surface Conductivity of the Honeycomb Spin–Orbit Mott Insulator Na2IrO3. physica status solidi (b), 258(1).
    Dziuba, Thomas; Pietsch, Ina-Marie; Stark, Máté; Traeger, Georg A.; Gegenwart, Philipp & Wenderoth, Martin
  • Terahertz Magnetospectroscopy of Cyclotron Resonances from Topological Surface States in Thick Films of CdxHg1−xTe. physica status solidi (b), 258(1).
    Otteneder, Maximilian; Sacré, Daniel; Yahniuk, Ivan; Budkin, Grigory V.; Diendorfer, Kilian; Kozlov, Dmitry A.; Dmitriev, Ivan A.; Mikhailov, Nikolay N.; Dvoretsky, Sergey A.; Bel'kov, Vasily V.; Knap, Wojciech & Ganichev, Sergey D.
  • The Impact of Spin–Orbit Interaction on the Image States of High‐Z Materials. physica status solidi (b), 258(1).
    Braun, Jürgen & Ebert, Hubert
  • Ultrafast and Local Optoelectronic Transport in Topological Insulators. physica status solidi (b), 258(1).
    Kiemle, Jonas; Seifert, Paul; Holleitner, Alexander W. & Kastl, Christoph
  • Ultrafast Dynamics of Photocurrents in Surface States of Three‐Dimensional Topological Insulators. physica status solidi (b), 258(1).
    Güdde, Jens & Höfer, Ulrich
  • Visualizing coexisting surface states in the weak and crystalline topological insulator Bi2TeI. Nature Materials, 19(6), 610-616.
    Avraham, Nurit; Kumar Nayak, Abhay; Steinbok, Aviram; Norris, Andrew; Fu, Huixia; Sun, Yan; Qi, Yanpeng; Pan, Lin; Isaeva, Anna; Zeugner, Alexander; Felser, Claudia; Yan, Binghai & Beidenkopf, Haim
  • Mn‐Rich MnSb2Te4: A Topological Insulator with Magnetic Gap Closing at High Curie Temperatures of 45–50 K. Advanced Materials, 33(42).
    Wimmer, Stefan; Sánchez‐Barriga, Jaime; Küppers, Philipp; Ney, Andreas; Schierle, Enrico; Freyse, Friedrich; Caha, Ondrej; Michalička, Jan; Liebmann, Marcus; Primetzhofer, Daniel; Hoffman, Martin; Ernst, Arthur; Otrokov, Mikhail M.; Bihlmayer, Gustav; Weschke, Eugen; Lake, Bella; Chulkov, Evgueni V.; Morgenstern, Markus; Bauer, Günther; ... & Rader, Oliver
  • Fermi surface chirality induced in a TaSe2 monosheet formed by a Ta/Bi2Se3 interface reaction. Nature Communications, 13(1).
    Polyakov, Andrey; Mohseni, Katayoon; Felici, Roberto; Tusche, Christian; Chen, Ying-Jun; Feyer, Vitaly; Geck, Jochen; Ritschel, Tobias; Ernst, Arthur; Rubio-Zuazo, Juan; Castro, German R.; Meyerheim, Holger L. & Parkin, Stuart S. P.
 
 

Additional Information

Textvergrößerung und Kontrastanpassung