Project Details
Projekt Print View

GRK 1653:  Spatio/Temporal Probabilistic Graphical Models and Applications in Image Analysis

Subject Area Computer Science
Mathematics
Term from 2010 to 2019
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 159280219
 
Final Report Year 2020

Final Report Abstract

Probabilistic graphical models provide a consistent framework for the statistical modeling and the computational analysis of scientific empirical data. The past decade has witnessed a significant increase in respecive research in the field of image analysis and related application areas, driven by thesynergy between statistics, pattern recognition, computer vision and machine learning. The objective is to devise models that enable to infer a coherent global interpretation of noise and ambiguous local image measurements, taking into account spatiotemporal context in images and videos, and domain-specific contextual knowledge. Applications of probabilistic graphical models to such large-scale problems raise numerous research problems of modeling and algorithm design for inference and learning, requiring interdisciplinary expertise in applied mathematics, computer science and physics, besides a profound knowledge of the respective application areas. The basic intention of the Research Training Group is to gather experts from these fields and to establish a coherent research and study program on probabilistic graphical models, with a focus on spatial and spatiotemporal models and their applications in image analysis. The project treats methodological basic research on an equal footing with challenging scientific applications of image analysis in environmental science, life sciences and industry. The Research Training Group will provide a scientifically unique environment for study, collaboration and innovative research on probabilistic graphical models across disciplines, producing highly-qualified candidates for research careers in academia and industry.

Publications

  • (2010). „A Study of Parts-Based Object Class Detection Using Complete Graphs“. In: Int. J. Comp. Vision 87.1-2, S. 93–117
    Bergtholdt, M., J. H. Kappes, S. Schmidt und C. Schnörr
    (See online at https://doi.org/10.1007/s11263-009-0209-1)
  • (2010). „An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM“. In: Pattern Recognition, Proc. 32th DAGM Symposium
    Andres, B., J. H. Kappes, U. Köthe, C. Schnörr und F. Hamprecht
    (See online at https://doi.org/10.1007/978-3-642-15986-2_36)
  • (2011). „Bayesian inference for general Gaussian graphical models with application to multivariate lattice data“. In: Journal of the American Statistical Association 106, S. 1418–1433
    Dobra, A., A. Lenkoski und A. Rodriguez
    (See online at https://doi.org/10.1198/jasa.2011.tm10465)
  • (2011). „DELTR: Digital Embryo Lineage Tree Reconstructor“. In: Eighth IEEE International Symposium on Biomedical Imaging (ISBI), S. 1557–1560
    Lou, X., F. Kaster, M. Lindner, B. Kausler, U. Köthe, B. Höckendorf, J. Wittbrodt, H. Jänicke und F. A. Hamprecht
    (See online at https://doi.org/10.1109/ISBI.2011.5872698)
  • (2011). „Globally Optimal Image Partitioning by Multicuts“. In: EMMCVPR. Springer
    Kappes, J. H., M. Speth, B. Andres, G. Reinelt und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-642-23094-3_3)
  • (2011). „Order Preserving and Shape Prior Constrained Intra- Retinal Layer Segmentation in Optical Coherence Tomography“. In: MICCAI. Hrsg. von G. Fichtinger, A. L. Martel und T. M. Peters. Bd. 6893. Lecture Notes in Computer Science. Springer, S. 370– 377
    Rathke, F., S. Schmidt und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-642-23626-6_46)
  • (2011). „Probabilistic Image Segmentation with Closedness Constraints“. In: ICCV
    Andres, B., J. H. Kappes, T. Beier, U. Köthe und F. Hamprecht
    (See online at https://doi.org/10.1109/ICCV.2011.6126550)
  • (2011). „Sparse covariance estimation in heterogeneous samples“. In: Electronic Journal of Statistics 5, S. 981–1014
    Rodriguez, A., A. Lenkoski und A. Dobra
    (See online at https://doi.org/10.1214/11-ejs634)
  • (2011). „Video parsing for abnormality detection“. In: IEEE International Conference on Computer Vision, ICCV, S. 2415–2422
    Antic, B. und B. Ommer
    (See online at https://doi.org/10.1109/ICCV.2011.6126525)
  • (2012). „A Bayesian Approach to Spaceborn Hyperspectral Optical Flow Estimation on Dust Aerosols“. In: Proceedings of the International Geoscience and Remote Sensing Symposium, S. 256–259
    Bachl, F. E., P. Fieguth und C. S. Garbe
    (See online at https://doi.org/10.1109/IGARSS.2012.6351589)
  • (2012). „A Discrete Chain Graph Model for 3d+t Cell Tracking with High Misdetection Robustness“. In: ECCV
    Kausler, B. X., M. Schiegg, B. Andres, M. Lindner, U. Köthe, H. Leitte, J. Wittbrodt, L. Hufnagel und F. A. Hamprecht
    (See online at https://doi.org/10.1007/978-3-642-33712-3_11)
  • (2012). „Classifying and Tracking Dust Plumes from Passive Remote Sensing“. In: Proceedings of the ESA, SOLAS & EGU Joint Conference ‘Earth Observation for Ocean-Atmosphere Interaction Science’. Bd. 703. ESA Special Publication, S1–3
    Bachl, F. E. und C. S. Garbe
  • (2012). „Multivariate Probabilistic Forecasting Using Ensemble Bayesian Model Averaging and Copulas“. In: Quarterly Journal of the Royal Meteorological Society 139.673, S. 982–991
    Möller, A., A. Lenkoski und T. Thorarinsdottir
    (See online at https://doi.org/10.1002/qj.2009)
  • (2012). „Robust FDI Determinants“. In: Journal of Maroeconomics 34, S. 637–651
    Eicher, T. S., L. Helfman und A. Lenkoski
    (See online at https://doi.org/10.1016/j.jmacro.2012.01.010)
  • (2012). „Robust Multiple-Instance Learning with Superbags“. In: Computer Vision - ACCV, Revised Selected Papers, Part II
    Antic, B. und B. Ommer
    (See online at https://doi.org/10.1007/978-3-642-37444-9_19)
  • (2012). „The Lazy Flipper: Efficient Depth-limited Exhaustive Search in Discrete Graphical Models“. In: ECCV
    Andres, B., J. H. Kappes, T. Beier, U. Köthe und F. Hamprecht
    (See online at https://doi.org/10.1007/978-3-642-33786-4_12)
  • (2013). „A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems“. In: IEEE Conference on Computer Vision and Pattern Recognition
    Kappes, J. H., B. Andres, F. A. Hamprecht, C. Schnörr, S. Nowozin, D. Batra, S. Kim, B. X. Kausler, J. Lellmann, N. Komodakis und C. Rother
    (See online at https://doi.org/10.1109/CVPR.2013.175)
  • (2013). „A Hierarchical Approach to Optimal Transport“. In: Scale Space and Variational Methods (SSVM), S. 452–464
    Schmitzer, B. und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-642-38267-3_38)
  • (2013). „Bayesian Inference on Integrated Continuity Fluid Flows and their Application to Dust Aerosols“. In: Proceedings of the International Geoscience and Remote Sensing Symposium, S. 2246– 2249
    Bachl, F. E., P. Fieguth und C. S. Garbe
    (See online at https://doi.org/10.1109/IGARSS.2013.6723264)
  • (2013). „Chapter Three - Zinc Finger Proteins and the 3D Organization of Chromosomes“. In: Organisation of Chromosomes. Hrsg. von R. Donev. Bd. 90. Advances in Protein Chemistry and Structural Biology. Academic Press, S. 67–117
    Feinauer, C. J., A. Hofmann, S. Goldt, L. Liu, G. Maté und D. W. Heermann
    (See online at https://doi.org/10.1016/B978-0-12-410523-2.00003-1)
  • (2013). „Graphical and Topological Analysis of the Cell Nucleus“. Diss. Faculty of Physics und Astronomy, Heidelberg University
    Maté, G.
    (See online at https://doi.org/10.11588/heidok.00016119)
  • (2013). „Less Is More: Video Trimming for Action Recognition“. In: 2013 IEEE International Conference on Computer Vision Workshops
    Antic, B., T. Milbich und B. Ommer
    (See online at https://doi.org/10.1109/ICCVW.2013.73)
  • (2013). „Modelling convex shape priors and matching based on the Gromov-Wasserstein distance“. In: Journal of Mathematical Imaging and Vision 46.1, S. 143–159
    Schmitzer, B. und C. Schnörr
    (See online at https://doi.org/10.1007/s10851-012-0375-6)
  • (2013). „Object Segmentation by Shape Matching with Wasserstein Modes“. In: Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), S. 123–136
    Schmitzer, B. und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-642-40395-8_10)
  • (2013). „Towards Efficient and Exact MAP- Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization“. In: CVPR
    Kappes, J. H., M. Speth, G. Reinelt und C. Schnörr
    (See online at https://doi.org/10.1109/CVPR.2013.229)
  • (2013). „Tracking-by-Assignment as a Probabilistic Graphical Model with Applications in Developmental Biology“. Diss. Faculty of Physics und Astronomy
    Kausler, B.
    (See online at https://doi.org/10.11588/heidok.00015296)
  • (2014). „A topological similarity measure for proteins“. In: Biochimica et Biophysica Acta (BBA) - Biomembranes 1838.4. Viral Membrane Proteins - Channels for Cellular Networking, S. 1180–1190
    Maté, G., A. Hofmann, N. Wenzel und D. W. Heermann
    (See online at https://doi.org/10.1016/j.bbamem.2013.08.019)
  • (2014). „Exact Solutions for Discrete Graphical Models: Multicuts and Reduction Techniques“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Speth, M.
    (See online at https://doi.org/10.11588/heidok.00017173)
  • (2014). „Isometry Invariant Shape Priors for Variational Image Segmentation“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Schmitzer, B.
    (See online at https://doi.org/10.11588/heidok.00016873)
  • (2014). „Latent Structured Models for Video Understanding“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Antic, B.
    (See online at https://dx.doi.org/10.11588/heidok.00017157)
  • (2014). „Learning Latent Constituents for Recognition of Group Activities in Video“. In: Computer Vision - ECCV
    Antic, B. und B. Ommer
    (See online at https://doi.org/10.1007/978-3-319-10590-1_3)
  • (2014). „Modeling of Locally Scaled Spatial Point Processes, and Applications in Image Analysis“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Didden, E.-M.
    (See online at https://doi.org/10.11588/heidok.00017757)
  • (2014). „Multivariate and Spatial Ensemble Postprocessing Methods“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Möller, A.
    (See online at https://doi.org/10.11588/heidok.00017066)
  • (2014). „Persistence intervals of fractals“. In: Physica A: Statistical Mechanics and its Applications 405, S. 252–259
    Maté, G. und D. W. Heermann
    (See online at https://doi.org/10.1016/j.physa.2014.03.037)
  • (2014). „Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization“. In: Medical Image Analysis 18.5, S. 781–794
    Rathke, F., S. Schmidt und C. Schnörr
    (See online at https://doi.org/10.1016/j.media.2014.03.004)
  • (2014). „Statistical analysis of protein ensembles“. In: Frontiers in Physics
    Maté, G. und D. W. Heermann
    (See online at https://doi.org/10.3389/fphy.2014.00020)
  • (2014). „The affinely invariant distance correlation“. In: Bernoulli 20.4, S. 2305–2330
    Dueck, J., D. Edelmann, T. Gneiting und D. Richards
    (See online at https://doi.org/10.3150/13-BEJ558)
  • (2014). „Two-Stage Bayesian Model Averaging in the Endogenous Variable Model“. In: Econometric Reviews 33, S. 122–151
    Lenkoski, A., T. S. Eicher und A. E. Raftery
    (See online at https://doi.org/10.1080/07474938.2013.807150)
  • (2012). „Weakly Convex Coupling Continuous Cuts and Shape Priors“. In: Scale Space and Variational Methods (SSVM), S. 423–434
    Schmitzer, B. und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-642-24785-9_36)
  • (2015). „A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems“. In: International Journal of Computer Vision 115.2, S. 155–184
    Kappes, J. H., B. Andres, F. A. Hamprecht, C. Schnörr, S. Nowozin, D. Batra, S. Kim, B. X. Kausler, T. Kröger, J. Lellmann, N. Komodakis, B. Savchynskyy und C. Rother
    (See online at https://doi.org/10.1007/s11263-015-0809-x)
  • (2015). „A Computational Approach to Log-Concave Density Estimation“. In: An. St. Univ. Ovidius Constanta 23.3, S. 151–166
    Rathke, F. und C. Schnörr
    (See online at https://doi.org/10.1515/auom-2015-0053)
  • (2015). „A Convex Relaxation Approach to the Affine Subspace Clustering Problem“. In: Pattern Recognition - 37th German Conference, GCPR 2015, Aachen, Germany, October 7-10, 2015, Proceedings, S. 67–78
    Silvestri, F., G. Reinelt und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-24947-6_6)
  • (2015). „A generalization of an integral arising in the theory of distance correlation“. In: Statistics & Probability Letters 97, S. 116–119
    Dueck, J., D. Edelmann und D. Richards
    (See online at https://doi.org/10.1016/j.spl.2014.11.012)
  • (2015). „A generalized Potts model for confocal microscopy images“. In: Int. J. Modern Physics 29.8, S. 1550048
    Maté, G. und D. W. Heermann
    (See online at https://doi.org/10.1142/S0217979215500484)
  • (2015). „Adaptive Dictionary-Based Spatio-Temporal Flow Estimation for Echo PIV“. In: Proc. EMMCVPR
    Bodnariuc, E., A. Gurung, S. Petra und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-14612-6_28)
  • (2015). „Adaptive Sharpening of Multimodal Distributions“. In: Proc. CVCS. IEEE, S. 1–4
    Åström, F., M. Felsberg und H. Scharr
    (See online at https://doi.org/10.1109/CVCS.2015.7274890)
  • (2015). „Bayesian Hierarchical Models for Remote Assessment of Atmospheric Dust“. Diss. Faculty of Mathematics und Computer Science
    Bachl, F. E.
    (See online at https://dx.doi.org/10.11588/heidok.00018257)
  • (2015). „Bayesian Motion Estimation for Dust Aerosols“. In: The Annals of Applied Statistics 9.3, S. 1298–1327
    Bachl, F. E., A. Lenkoski, T. L. Thorarinsdottir und C. S. Garbe
    (See online at https://doi.org/10.1214/15-AOAS835)
  • (2015). „Dependencies in Complex Systems“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Dueck, J.
    (See online at https://doi.org/10.11588/heidok.00018619)
  • (2015). „Estimating Vehicle Ego-Motion and Piecewise Planar Scene Structure from Optical Flow in a Continuous Framework“. In: German Conference on Pattern Recognition. Springer, S. 41–52
    Neufeld, A., J. Berger, F. Becker, F. Lenzen und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-24947-6_4)
  • (2015). „Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes“. In: J. Math. Imag. Vision 52.3, S. 436–458
    Schmitzer, B. und C. Schnörr
    (See online at https://doi.org/10.1007/s10851-014-0546-8)
  • (2015). „Improving 3d em data segmentation by joint optimization over boundary evidence and biological priors“. In: International Symposium on Biomedical Imaging
    Krasowski, N., T. Beier, G. Knott, U. Koethe, F. Hamprecht und A. Kreshuk
    (See online at https://doi.org/10.1109/ISBI.2015.7163929)
  • (2015). „On Coupled Regularization for Non-convex Variational Image Enhancement“. In: Proc. ACPR. IEEE, S. 786–790
    Åström, F. und C. Schnörr
    (See online at https://doi.org/10.1109/ACPR.2015.7486610)
  • (2015). „Per-Sample Kernel Adaptation for Visual Recognition and Grouping“. In: 2015 IEEE International Conference on Computer Vision, ICCV
    Antic, B. und B. Ommer
    (See online at https://doi.org/10.1109/ICCV.2015.148)
  • (2015). „Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts“. In: Proc. SSVM. LNCS. Springer
    Kappes, J., P. Swoboda, B. Savchynskyy, T. Hazan und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-18461-6_19)
  • (2015). „Probabilistic Graphical Models for Medical Image Segmentation“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Rathke, F.
    (See online at https://doi.org/10.11588/heidok.00018173)
  • (2015). „Radiation Induced Chromatin Conformation Changes Analysed by Fluorescent Localization Microscopy, Statistical Physics, and Graph Theory“. In: PLOS One 10.6, e0128555
    Zhang, Y., G. Maté, P. Müller, S. Hillebrandt, M. Krufczik, M. Bach, R. Kaufmann, M. Hausmann und D. W. Heermann
    (See online at https://doi.org/10.1371/journal.pone.0128555)
  • (2015). „Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations“. In: Scale Space and Variational Methods. Springer, S. 397–409
    Berger, J., A. Neufeld, F. Becker, F. Lenzen und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-18461-6_32)
  • (2015). „Shape from Texture using Locally Scaled Point Processes“. In: Image Anal. Stereol. 34.3, S. 161–170
    Didden, E.-M., T. Thorarinsdottir, A. Lenkoski und C. Schnörr
    (See online at https://doi.org/10.5566/ias.1078)
  • (2015). „Solution-Driven Adaptive Total Variation Regularization“. In: Scale Space and Variational Methods. Springer International Publishing, S. 203–215
    Lenzen, F. und J. Berger
    (See online at https://doi.org/10.1007/978-3-319-18461-6_17)
  • (2015). „Spatiotemporal Parsing of Motor Kinematics for Assessing Stroke Recovery“. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI
    Antic, B., U. Büchler, A. Wahl, M. E. Schwab und B. Ommer
    (See online at https://doi.org/10.1007/978-3-319-24574-4_56)
  • (2015). „Structures of Multivariate Dependence“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Edelmann, D.
    (See online at https://doi.org/10.11588/heidok.00018975)
  • (2016). „A Geometric Approach to Image Labeling“. In: Proc. ECCV. Springer, S. 139–154
    Åström, F., S. Petra, B. Schmitzer und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-46454-1_9)
  • (2016). „Automated Segmentation for Connectomics Utilizing higher-Order Biological Priors“. Diss. Faculty of Physics und Astronomy, Heidelberg University
    Krasowski, N.
    (See online at https://doi.org/10.11588/heidok.00021617)
  • (2016). „Automated Segmentation for Connectomics Utilizing Higher-Order Biological Priors“. Doctoral Thesis. Ruprecht-Karls-Universität Heidelberg, Faculty of Mathematics und Computer Science
    Krasowski, N. E.
    (See online at https://doi.org/10.11588/heidok.00021617)
  • (2016). „CliqueCNN: Deep Unsupervised Exemplar Learning“. In: Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS)
    Bautista, M., A. Sanakoyeu, E. Sutter und B. Ommer
    (See online at https://doi.org/10.48550/arXiv.1608.08792)
  • (2016). „Color Image Regularization via Channel Mixing and Half Quadratic Minimization“. In: Proc. ICIP. IEEE, S. 4007–4011
    Åström, F.
    (See online at https://doi.org/10.1109/ICIP.2016.7533112)
  • (2016). „Data Adaptive Inference for Locally Stationary Processes“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Richter, S.
    (See online at https://doi.org/10.11588/heidok.00022308)
  • (2016). „Distances, Gegenbauer Expansions, Curls, and Dimples: On Dependence Measures for Random Fields“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Fiedler, J.
    (See online at https://doi.org/10.11588/heidok.00022193)
  • (2016). „Double-Opponent Vectorial Total Variation“. In: Proc. ECCV. Springer, S. 644–659. ISBN: 978-3-319-46475-6
    Åström, F. und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-46475-6_40)
  • (2016). „Higher-order Segmentation via Multicuts“. In: Comp. Vision Image Understanding 143, S. 104–119
    Kappes, J., M. Speth, G. Reinelt und C. Schnörr
    (See online at https://doi.org/10.1016/j.cviu.2015.11.005)
  • (2016). „Joint Recursive Monocular Filtering of Camera Motion and Disparity Map“. In: 38th German Conference on Pattern Recognition. Springer
    Berger, J. und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-45886-1_19)
  • (2016). „Parametric Dictionary-Based Velocimetry for Echo PIV“. In: Proc. GCPR
    Bodnariuc, E., S. Petra, C. Poelma und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-45886-1_27)
  • (2016). „Plane Wave Acoustic Superposition for Fast Ultrasound Imaging“. In: Proc. IUS
    Bodnariuc, E., M. Schiffner, S. Petra und C. Schnörr
    (See online at https://doi.org/10.1109/ULTSYM.2016.7728894)
  • (2016). „Second Order Minimum Energy Filtering“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Berger, J.
    (See online at https://dx.doi.org/10.11588/heidok.00022530)
  • (2016). „Source Localization of Reaction- Diffusion Models for Brain Tumors“. In: Proc. GCPR. Springer, S. 414–425
    Jaroudi, R., G. Baravdish, F. Åström und B. T. Johansson
    (See online at https://doi.org/10.1007/978-3-319-45886-1_34)
  • (2016). „The Assignment Manifold: A smooth model for image labeling“. In: Proc. CVPR. DIFF- CVML, S. 1–9
    Åström, F., S. Petra, B. Schmitzer und C. Schnörr
    (See online at https://doi.org/10.1109/CVPRW.2016.124)
  • (2017). „A Dual Ascent Framework for Lagrangean Decomposition of Combinatorial Problems“. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
    Swoboda, P., J. Kuske und B. Savchynskyy
    (See online at https://doi.org/10.1109/CVPR.2017.526)
  • (2017). „A Geometric Approach for Color Image Regularization“. In: J. Comp. Vision Image Understanding 165. S. 43–59
    Åström, F. und C. Schnörr
    (See online at https://doi.org/10.1016/j.cviu.2017.10.013)
  • (2017). „A Novel Convex Relaxation for Non-binary Discrete Tomography“. In: Scale Space and Variational Methods in Computer Vision. Springer, S. 235–246
    Kuske, J., P. Swoboda und S. Petra
    (See online at https://doi.org/10.1007/978-3-319-58771-4_19)
  • (2017). „An objective comparison of cell-tracking algorithms“. In: Nature methods 14.12, S. 1141
    Ulman, V., M. Maška, K. Magnusson, O. Ronneberger, C. Haubold, S. Wolf, N. Harder, P. Matula, P. Matula, D. Svoboda, M. Radojevic u. a.
    (See online at https://doi.org/10.1038/nmeth.4473)
  • (2017). „Compressed Motion Sensing“. In: Scale Space and Variational Methods in Computer Vision: 6th International Conference, SSVM 2017, Kolding, Denmark, June 4-8, 2017. Springer International Publishing, S. 602–613. ISBN: 978-3-319-58771-4
    Dalitz, R., S. Petra und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-58771-4_48)
  • (2017). „Deep Semantic Feature Matching“. In: Proc. CVPR
    Ufer, N. und B. Ommer
    (See online at https://doi.org/10.1109/CVPR.2017.628)
  • (2017). „Distance correlation coefficients for Lancaster distributions“. In: Journal of Multivariate Analysis 154, S. 19–39
    Dueck, J., D. Edelmann und D. Richards
    (See online at https://doi.org/10.1016/j.jmva.2016.10.012)
  • (2017). „Geometric Image Labeling with Global Convex Labeling Constraints“. In: Proc. EMMCVPR. LNCS. Springer
    Zern, A., K. Rohr und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-78199-0_35)
  • (2017). „Gradient Flows on a Riemannian Submanifold for Discrete Tomography“. In: Proc. GCPR
    Zisler, M., F. Savarino, S. Petra und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-66709-6_24)
  • (2017). „Graphical Model Parameter Learning by Inverse Linear Programming“. In: Proc. SSVM. Springer, S. 323–334. ISBN: 978-3-319-58771-4
    Trajkovska, V., P. Swoboda, F. Åström und S. Petra
    (See online at https://doi.org/10.1007/978-3-319-58771-4_26)
  • (2017). „Graphical Model Parameter Learning by Inverse Linear Programming“. In: Scale Space and Variational Methods in Computer Vision: 6th International Conference, SSVM 2017, Kolding, Denmark, June 4-8, 2017, Proceedings. Hrsg. von F. Lauze, Y. Dong und A. B. Dahl. LNCS 10302. Springer, S. 323–334
    Trajkovska, V., P. Swoboda, F. Åström und S. Petra
    (See online at https://doi.org/10.1007/978-3-319-58771-4_26)
  • (2017). „Image Labeling by Assignment“. In: J. Math. Imag. Vision 58.2, S. 211–238
    Åström, F., S. Petra, B. Schmitzer und C. Schnörr
    (See online at https://doi.org/10.1007/s10851-016-0702-4)
  • (2017). „Image Reconstruction by Multilabel Propagation“. In: Proc. SSVM. Springer, S. 247–259. ISBN: 978-3-319-58771-4
    Zisler, M., F. Åström, S. Petra und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-58771-4_20)
  • (2017). „Learned Watershed: End-To-End Learning of Seeded Segmentation“. In: The IEEE International Conference on Computer Vision (ICCV)
    Wolf, S., L. Schott, U. Kothe und F. Hamprecht
    (See online at https://doi.org/10.1109/ICCV.2017.222)
  • (2017). „Learning Probabilistic Graphical Models for Image Segmentation“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Trajkovska, V.
    (See online at https://doi.org/10.11588/heidok.00023778)
  • (2017). „Learning Probabilistic Graphical Models for Image Segmentation“. Doctoral Thesis. Ruprecht-Karls-Universität Heidelberg, Faculty of Mathematics und Computer Science
    Trajkovska, V.
    (See online at https://doi.org/10.11588/heidok.00023778)
  • (2017). „Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans“. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), S. 177–184
    Rathke, F., M. Desana und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-66182-7_21)
  • (2017). „MAP Image Labeling Using Wasserstein Messages and Geometric Assignment“. In: Proc. SSVM. Bd. 10302. LCNS. Springer
    Aström, F., R. Hühnerbein, F. Savarino, J. Recknagel und C. SchnörrAström, F., R. Hühnerbein, F. Savarino, J. Recknagel und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-58771-4_30)
  • (2017). „MAP Image Labeling Using Wasserstein Messages and Geometric Assignment“. In: Proc. SSVM. Bd. 10302. LCNS. Springer
    Åström, F., R. Hühnerbein, F. Savarino, J. Recknagel und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-58771-4_30)
  • (2017). „Neuron Segmentation with High-Level Biological Priors“. In: IEEE Transactions on Medical Imaging 37.4, S. 829–839
    Krasowski, N., T. Beier, G. Knott, U. Koethe, F. Hamprecht und A. Kreshuk
    (See online at https://doi.org/10.1109/TMI.2017.2712360)
  • (2017). „Numerical Integration of Riemannian Gradient Flows for Image Labeling“. In: Proc. SSVM. Bd. 10302. LNCS. Springer
    Savarino, F., R. Hühnerbein, F. Aström, J. Recknagel und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-319-58771-4_29)
  • (2017). „Representations of Partition Problems and the Method of Moments“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Silvestri, F.
    (See online at https://doi.org/10.11588/heidok.00023674)
  • (2017). „Representations of Partition Problems and the Method of Moments“. Doctoral Thesis. Ruprecht-Karls-Universität Heidelberg, Faculty of Mathematics und Computer Science
    Silvestri, F.
    (See online at https://doi.org/10.11588/heidok.00023674)
  • (2017). „Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations“. In: Journal of Mathematical Imaging and Vision 58.1, S. 102–129
    Berger, J., F. Lenzen, F. Becker, A. Neufeld und C. Schnörr
    (See online at https://doi.org/10.1007/s10851-016-0693-1)
  • (2017). „Segmentation of cell structures using Model-Based Set Covering with Iterative Reweighting“. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), S. 392–396
    Markowsky, P., S. Reith, T. E. Zuber, R. König, K. Rohr und C. Schnörr
    (See online at https://doi.org/10.1109/ISBI.2017.7950545)
  • (2017). „Self-supervised Learning of Pose Embeddings from Spatiotemporal Relations in Videos“. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
    Sümer, Ö., T. Dencker und B. Ommer
    (See online at https://doi.org/10.1109/ICCV.2017.461)
  • (2017). „Sum-Product Graphical Models: a Graphical Model Perspective on Sum-Product Networks“. Doctoral Thesis. Ruprecht-Karls-Universität Heidelberg, Faculty of Mathematics und Computer Science
    Desana, M.
    (See online at https://doi.org/10.11588/heidok.00025652)
  • (2017). „Tracking objects with higher order interactions via delayed column generation“. In: Artificial Intelligence and Statistics, S. 1132–1140
    Wang, S., S. Wolf, C. Fowlkes und J. Yarkony
  • (2017). „Unsupervised Video Understanding by Reconciliation of Posture Similarities“. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
    Milbich, T., M. A. Bautista, E. Sutter und B. Ommer
    (See online at https://doi.org/10.1109/ICCV.2017.471)
  • (2018). „A Spectral Approach to Peak Velocity Estimation of Pipe Flows from Noisy Image Sequences“. In: Analele Stiintifice ale Univesitatii Ovidius Constanta
    Bodnariuc, E.
    (See online at https://doi.org/10.2478/auom-2018-0017)
  • (2018). „A Variational U-Net for Conditional Appearance and Shape Generation“. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
    Esser, P., E. Sutter und B. Ommer
    (See online at https://doi.org/10.1109/CVPR.2018.00923)
  • (2018). „Compressed Motion Sensing and dynamic Tomography“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Breckner, R.
    (See online at https://dx.doi.org/10.11588/heidok.00024505)
  • (2018). „Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment“. In: SIAM J. Imaging Science 11.2, S. 1317–1362
    Hühnerbein, R., F. Savarino, F. Aström und C. Schnörr
    (See online at https://doi.org/10.1137/17M1150669)
  • (2018). „Multiscale Adaptive Correlation Method for Ultrasound Speckle Image Velocimetry“. In: IEEE IUS
    Bodnariuc, E. und C. Schnörr
    (See online at https://doi.org/10.1109/ULTSYM.2018.8579843)
  • (2018). „On Plane Wave Ultrasound Particle Image Velocimetry“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Bodnariuc, E.
    (See online at https://dx.doi.org/10.11588/heidok.00024515)
  • (2018). „Segmentation of Cell Nuclei using Intensity-based Model Fitting and Sequential Convex Programming“. In: Proc. IEEE ISBI, S. 654–657
    Kostrykin, L., C. Schnörr und K. Rohr
    (See online at https://doi.org/10.1109/ISBI.2018.8363659)
  • (2018). „Simultaneous inference for time-varying models“. In: technical report
    Karmakar, S., S. Richter und W. B. Wu
  • (2018). „Sum-Product Graphical Models: a Graphical Model Perspective on Sum-Product Networks“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Desana, M.
    (See online at https://doi.org/10.11588/heidok.00025652)
  • (2018). „The mutex watershed: efficient, parameter-free image partitioning“. In: Proceedings of the European Conference on Computer Vision (ECCV), S. 546–562
    Wolf, S., C. Pape, A. Bailoni, N. Rahaman, A. Kreshuk, U. Kothe und F. Hamprecht
    (See online at https://doi.org/10.1007/978-3-030-01225-0_34)
  • (2018). „Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment“. In: GCPR. Springer, S. 698–713
    Zern, A., M. Zisler, F. Åström, S. Petra und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-030-12939-2_48)
  • (2019). „A Variational Perspective on the Assignment Flow“. In: Proc. SSVM. Springer
    Savarino, F. und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-030-22368-7_43)
  • (2019). „Cross validation for locally stationary processes“. In: The Annals of Statistics 47.4, S. 2145–2173
    Richter, S. und R. Dahlhaus
    (See online at https://doi.org/10.1214/18-AOS1743)
  • (2019). „End-To-End Learned Random Walker for Seeded Image Segmentation“. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
    Cerrone, L., A. Zeilmann und F. A. Hamprecht
    (See online at https://doi.org/10.1109/CVPR.2019.01284)
  • (2019). „Exponential Integration of the Linear Assignment Flow“. In: PAMM 19.1
    Zeilmann, A., F. Savarino, S. Petra und C. Schnörr
    (See online at https://doi.org/10.1002/pamm.201900434)
  • (2019). „Fast Multivariate Log-Concave Density Estimation“. In: Comp. Statistics & Data Analysis 140, S. 41–58
    Rathke, F. und C. Schnörr
    (See online at https://doi.org/10.1016/j.csda.2019.04.005)
  • (2019). „Globally Optimal Segmentation of Cell Nuclei in Fluorescence Microscopy Images using Shape and Intensity Information“. In: Medical Image Analysis 58, S. 101536
    Kostrykin, L., C. Schnörr und K. Rohr
    (See online at https://doi.org/10.1016/j.media.2019.101536)
  • (2019). „Learning Adaptive Regularization for Image Labeling Using Geometric Assignment“. In: Proc. SSVM. Springer
    Hühnerbein, R., F. Savarino, S. Petra und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-030-22368-7_31)
  • (2019). „LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos“. In: International Conference on Learning Representations
    Kirschbaum, E., M. Haußmann, S. Wolf, H. Sonntag, J. Schneider, S. Elzoheiry, O. Kann, D. Durstewitz und F. Hamprecht
  • (2019). „Performance Bounds For Co-/Sparse Box Constrained Signal Recovery“. In: Analele Universitatii Ovidius Constanta-Seria Matematica 27.1, S. 79–106
    Kuske, J. und S. Petra
    (See online at https://doi.org/10.2478/auom-2019-0005)
  • (2019). „Spatially Regularized Geometric Assignment for Unsupervised Label Learning on Manifolds“. In: PAMM 19.1.
    Zern, A., M. Zisler, S. Petra und C. Schnörr
    (See online at https://doi.org/10.1002/pamm.201900258)
  • (2019). „Towards a general theory for non-linear locally stationary processes“. In: Bernoulli 25.2, S. 1013–1044
    Dahlhaus, R., S. Richter und W. B. Wu
    (See online at https://doi.org/10.3150/17-BEJ1011)
  • (2019). „Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment“. In: Journal of Mathematical Imaging and Vision
    Zern, A., M. Zisler, S. Petra und C. Schnörr
    (See online at https://doi.org/10.1007/s10851-019-00935-7)
  • (2019). „Unsupervised Labeling by Geometric and Spatially Regularized Self-Assignment“. In: Proc. SSVM. Springer
    Zisler, M., A. Zern, S. Petra und C. Schnörr
    (See online at https://doi.org/10.1007/978-3-030-22368-7_34)
  • (2020). „Geometric Numerical Integration of the Assignment Flow“. In: Inverse Problems
    Zeilmann, A., F. Savarino, S. Petra und C. Schnörr
    (See online at https://doi.org/10.1088/1361-6420/ab2772)
  • (2020). „Inference and Model Parameter Learning for Image Labeling by Geometric Assignment“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Hühnerbein, R.
    (See online at https://doi.org/10.11588/heidok.00028294)
  • (2020). „Learning the Arrow of Time for Problems in Reinforcement Learning“. In: International Conference on Learning Representations
    Rahaman, N., S. Wolf, A. Goyal, R. Remme und Y. Bengio
  • (2020). „Sum-Product Graphical Models“. In: Machine Learning 109, S. 135–173
    Desana, M. und C. Schnörr
    (See online at https://doi.org/10.1007/s10994-019-05813-2)
  • (2020). „The mutex watershed and its objective: Efficient, parameter-free image partitioning“. In: IEEE Transactions on Pattern Analysis & Machine Intelligence
    Wolf, S., A. Bailoni, C. Pape, N. Rahaman, A. Kreshuk, U. Kothe und F. Hamprecht
    (See online at https://doi.org/10.1109/TPAMI.2020.2980827)
  • (2020). „Variational Approaches for Image Labeling on the Assignment Manifold“. Diss. Faculty of Mathematics und Computer Science, Heidelberg University
    Savarino, F.
    (See online at https://doi.org/10.11588/heidok.00028522)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung