Project Details
Rechtfertigung der NLS-Approximation im Fall semilinearer instabiler quadratischer Resonanzen und quasilinearer nichtresonanter quadratischer Nichtlinearitäten
Applicant
Professor Dr. Guido Schneider
Subject Area
Mathematics
Term
from 2009 to 2013
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 155608423
Die Nichtlineare Schrödingergleichung (NLS) beschreibt näherungsweise die Evolution der Einhüllenden eines räumlich und zeitlich oszillierenden Wellenpaketes. Wegen dieses universellen Charakters taucht sie in verschiedensten Bereichen, wie beim Wasserwellenproblem oder in der Nichtlinearen Optik, als Amplitudengleichung auf. In numerischen Simulationen erweist sie sich als hervorragende Approximation der Wirklichkeit, die vielfach weit über den theoretischen Gültigkeitsbereich praktisch anwendbar ist. Das Ziel dieses Projektes soll der Nachweis oder die Falsifizierung der Approximationseigenschaft der NLS-Gleichung für semilineare Systeme mit instabilen quadratischen Resonanzen und für quasilineare Systeme mit nichtresonanten quadratischen Nichtlinearitäten sein. Der Nachweis soll durch ein Zusammenspiel numerischer und analytischer Methoden geschehen.
DFG Programme
Research Grants