Project Details
Projekt Print View

Schizophrenia and Nicotine Addiction: Analysis of genetic mouse models

Subject Area Biological Psychiatry
Term from 2009 to 2015
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 146395062
 
Final Report Year 2017

Final Report Abstract

The incidence of smoking and addiction to nicotine is higher in patients suffering from schizophrenia compared to healthy controls. The reasons for this are not entirely clear, but two possible hypotheses have been put forward: Smoking may be a form of self-medication and/or genetic risk factors for schizophrenia may also affect the rewarding and addictive effects of smoking. These hypotheses are not mutually exclusive. We have generated a genetic mouse model of schizophrenia by expressing the primate-specific gene LG72, which has been identified as a candidate susceptibility gene for schizophrenia, in transgenic mice. These animals show a number of behavioural phenotypes that have been associated with schizophrenia symptoms, such as impaired PPI, cognitive, olfactory and motor deficits. The schizophrenia pathology probably involves and increased mitochondrial production of reactive oxidant species through binding of LG72 to the respiratory chain complex I. This resulted in increased levels of oxidized lipids and proteins, with a concomitant up-regulation of antioxidant mechanisms such that the antioxidant compound glutathione was exhausted in transgenic animals. An increase in glutathione through administration of the rate-limiting amino acid cysteine rescued most of the behavioural effects of the LG72 expression. Nicotine treatment of transgenic animals also ameliorated many, but not all, of the cognitive deficits including working memory, social memory and operant learning. Spatial learning and memory, as assessed in the Morris water maze test, however, was not improved by nicotine treatment. The G72- expression also affected nicotine-induced changes in the expression of nicotinic acetylcholine receptors (nAChR) in specific brain regions. Thus, nicotine induced up-regulation of α4β2 nAChR in many brain regions. This effect was less pronounced in transgenic mice. In contrast, G72 expression facilitated an increase in α7 nAChR density, most notably in the dentate gyrus and CA1-region of the hippocampus. Our findings demonstrate that a genetic risk factor for schizophrenia alters the molecular and behavioural consequences of chronic nicotine exposure. As nicotine also ameliorates some of the impairments associated with the genetic condition, they are also compatible with the hypothesis that the intense smoking behaviour observed in many schizophrenic patients may represent a form of selfmedication.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung