Project Details
Projekt Print View

ERA NanoSci - Interfacing Functional Nanocomposites for Non-Volatile Memory Devices

Subject Area Physical Chemistry of Molecules, Liquids and Interfaces, Biophysical Chemistry
Theoretical Chemistry: Electronic Structure, Dynamics, Simulation
Term from 2009 to 2013
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 119255324
 
Final Report Year 2013

Final Report Abstract

 The MEMORY project involves an interdisciplinary collaboration between theoreticians and experimentalists from 4 countries.  Main idea: Creating oriented arrays of conductive nanowires as components in a memory device fabricated with non-lithographic means.  Methodology: Assembling nanoparticles with block copolymers in thin films under the application of an electric field.  Progress to date: Developing fundamental understanding of interfacing functional nanoparticles and block copolymers under electric fields.  Main challenges: extremely long delays (from months to over a year) in the transfer of funding throughout the entire duration of the project caused us to re-formulate our research goals.  Main outcomes: Development of new experimental and theoretical knowledge; formation of new collaborative ties, which persist after the termination of this project; training young scientists in all groups.

Publications

  • “Co-Assembly of Block Copolymers and Nanorods in Ultrathin Films: Effects of Copolymer Size and Nanorod Filling Fraction”, Phys. Chem. Chem. Phys. 2010, 12, 12885
    Ploshnik, E.; Salant, A.; Banin, U.; Shenhar, R.
  • “Hierarchical Surface Patterns of Nanorods Obtained by Co-Assembly with Block Copolymers in Ultrathin Films”, Adv. Mater. 2010, 22, 2774
    Ploshnik, E.; Salant, A.; Banin, U.; Shenhar, R.
  • “Low Cost, Centimeter Scale Nanoimprinting - Application to Organic Solar Cell Optimization”, Org. Electron. 2011, 12, 1241
    Avnon, E.; Yaacobi-Gross, N.; Ploshnik, E.; Shenhar, R.; Tessler, N.
  • “Modelling of hybrid block copolymernanoparticle composite materials”, Macromol. Theory Simul. 2011, 20, 769
    Pinna, M.; Pagonabarraga, I.; Zvelindovsky, A.V.
  • “Selective disordering of lamellaforming diblock copolymers under an electric field”, Soft Matter 2011, 7, 5161
    Sevink, G.J.A.; Pinna, M.; Langner, K.M.; Zvelindovsky, A.V.
  • “Beyond Orientation: The Impact of Electric Fields on Block Copolymers” Macromol. Chem. Phys. 2012, 213, 259
    Liedel, C.; Pester, C.W.; Ruppel, M.; Urban, V.S.; Böker A.
    (See online at https://doi.org/10.1002/macp.201100590)
  • “Large scale simulation of block copolymers with Cell Dynamics”, Eur. Phys. J. B 2012, 85, 210
    Pinna, M.; Zvelindovsky, A.V.
  • “Mesoscale modeling of block copolymer nanocomposites”, Soft Matter 2012, 8, 5102
    Langner, K.M.; Sevink, G.J.A.
  • “On the Alignment of a Cylindrical Block Copolymer: A Time-Resolved and 3-Dimensional SFM Study” Soft Matter 2012, 8, 995
    Liedel, C.; Hund, M.; Olszowka, V.; Böker A.
    (See online at https://doi.org/10.1039/c1sm06531a)
  • “Block Copolymer Nanocomposites in Electric Fields: Kinetics of Alignment”, ACS Macro Lett. 2013, 2, 53
    Liedel, C.; Pester, C.W.; Ruppel, M.; Lewin, C.; Pavan, M.J.; Urban, V.S.; Shenhar, R.; Bösecke, P.; Böker A.
    (See online at https://doi.org/10.1021/mz3005132)
  • “Electric Field Induced Selective Disordering in Lamellar Block Copolymers”, ACS Nano 2013
    Ruppel, M.; Pester, C.W.; Langner, K.M.; Sevink, G.J.A.; Schoberth, H.G.; Schmidt, K.; Urban, V.S.; Mays, J.W.; Böker A.
    (See online at https://doi.org/10.1021/nn3059604)
  • “Hierarchical Structuring in Block Copolymer Nanocomposites through Two Phase-Separation Processes Operating on Different Time Scales”, Adv. Funct. Mater. 2013
    Ploshnik, E.; Langner,K. M.; Halevi, A.; Ben-Lulu, M.; Müller, A.H.E.; Fraaije, J.G.E.M.; Sevink, G.J.A.; Shenhar, R.
    (See online at https://doi.org/10.1002/adfm.201300091)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung