3D Bio-Strukturierung mithilfe der selbst-faltenden Polymerschichten
Physikalische Chemie von Festkörpern und Oberflächen, Materialcharakterisierung
Zusammenfassung der Projektergebnisse
In summary, within the first funding period, we successfully developed novel synthetic routes for synthesis of thermoresponsive surfaces and applied them for control of adsorption of proteins and for smart patterning of proteins using visible light. We made substantial progress in development of new kinds of stimuli-responsive surfaces based on grafted polymer layers, adsorbed polymer monolayers, fusible materials and hydrogel films with different switching mechanism. We in detail investigated mechanism of switching of polymer brushes and the effect of their architecture on the switching behavior. We demonstrated new possibilities for patterning of proteins, particles and liquids. We investigated possibilities and limitations of reversible surface patterning of proteins using photothermal approach. It was shown that resolution down to 5 um could be achieved practically and theory predicts that higher resolution is possible when more powerful lasers are used. Another considerable achievement of the project is development of new method for 3D microfabrication using spontaneous folding of thin polymer bilayer films. In the second funding period we developed a cordially new approach for fabrication of complex 3D cellular structure using shape transformation – 4D biofabrication. The approach opens new perspective for fabrication of vascular structures as well as tissues with uniaxial orientation of cells (for example muscle tissue) that is now explored in the frames of new DFG projects.
Projektbezogene Publikationen (Auswahl)
- Protein-resistant polymer coatings based on surface-adsorbed poly(aminoethyl methacrylate)/poly(ethylene glycol) copolymers Biomacromolecules 2010, 11 (1), 233–237
Ionov, L.; Synytska, A.; Kaul, E.; Diez, S.
(Siehe online unter https://doi.org/10.1021/bm901082y) - Mixed Polymer Brushes with Locking Switching ACS Appl. Mater. & Interfaces, 2012, 4 (1), 483–489
Ionov, L.; Minko S.
(Siehe online unter https://doi.org/10.1021/am201736t) - Hierarchical multi-step folding of polymer bilayers Adv.Funct. Mater. 2013, 23, 2295–2300
Stoychev, G.; Turcaud, S.; Dunlop, J.; Ionov, L.
(Siehe online unter https://doi.org/10.1002/adfm.201203245) - Biodegradable self-folding polymer films with controlled thermo-triggered folding, Adv. Funct. Mater. 2014, 24(27), 4357–4363
Stroganov, V.; Zakharchenko, S.; Sperling, E.; Meyer, A.K.; Schmidt, O.G; Ionov, L.
(Siehe online unter https://doi.org/10.1002/adfm.201400176) - Programmable patterning of protein bioactivity by visible light, Nano Letters 2014, 14 (7), 4050–4057
Reuther, C.; Tucker, R.; Ionov, L.; Diez, S.
(Siehe online unter https://doi.org/10.1021/nl501521q) - Stimuli-Responsive Microjets with Reconfigurable Shape Angew. Chem. Int. Ed. 2014, 126(10), 2711
Magdanz, V.; Stoychey, G.; Ionov, L..; Sanchez, S.; Schmidt, O.
(Siehe online unter https://doi.org/10.1002/ange.201308610) - 4D Biofabrication using Shape-Morphing Hydrogels Adv. Mater. 2017 29, 170344
Kirillova, A.; Maxson, J.; Gomillion, C.T.; Ionov, L.
(Siehe online unter https://doi.org/10.1002/adma.201703443) - 4D biofabrication: 3D cell patterning using shape-changing films Adv. Funct. Mater. 2018, 28 1706248
Stroganov, V.; Pant, K.; Stoychev, G.; Janke, A.; Jehnichen, D.; Fery, A.; Handa, H.; Ionov, L.
(Siehe online unter https://doi.org/10.1002/adfm.201706248) - Effect of Architecture of Thermoresponsive Copolymer Brushes on Switching of Their Adsorption Properties Macromol. Chem. Phys. 2019, 220, 1900030
Marschelke, C.; Puretskiy, N.; Raguzin, I.; Melnyk, I.; Ionov, L.; Synytska, A.
(Siehe online unter https://doi.org/10.1002/macp.201900030) - 4D biofabrication of fibrous artificial nerve graft for neuron regeneration Biofabrication 2020 12 035027
Apsite, I.; Constante, G.; Dulle, M.; Vogt, L.; Caspari, A.; Boccaccini, A.; Synytska, A.; Salehi, S.; Ionov, L.
(Siehe online unter https://doi.org/10.1088/1758-5090/ab94cf) - 4D Biofabrication Using a Combination of 3D Printing and Melt- Electrowriting of Shape-Morphing Polymers ACS Appl. Mater. & Interfaces 2021, 13 (11), 12767–12776
Constante, G.; Apsite, I.; Alkhamis, H.; Dulle, M.; Schwarzer, M.; Caspari, A.; Synytska, A.; Salehi, S.; Ionov, L.
(Siehe online unter https://doi.org/10.1021/acsami.0c18608) - Shape-morphing fibrous hydrogel/elastomer bilayers fabricated by a combination of 3D printing and melt electrowriting for muscle tissue regeneration ACS Appl. Bio Materials 2021, 4 (2), 1720–1730
Uribe-Gomez, J.; Posada-Murcia, A.; Ergin. M.; Constante, G.; Apsite, I.; Schwarzer, M.; Caspari, A.; Synytska, A.; Salehi, S.; Ionov, L.
(Siehe online unter https://doi.org/10.1021/acsabm.0c01495)